Title: | General-to-Specific (GETS) Modelling and Indicator Saturation Methods |
---|---|
Description: | Automated General-to-Specific (GETS) modelling of the mean and variance of a regression, and indicator saturation methods for detecting and testing for structural breaks in the mean, see Pretis, Reade and Sucarrat (2018) <doi:10.18637/jss.v086.i03> for an overview of the package. In advanced use, the estimator and diagnostics tests can be fully user-specified, see Sucarrat (2021) <doi:10.32614/RJ-2021-024>. |
Authors: | Genaro Sucarrat [aut, cre], Felix Pretis [aut], James Reade [aut], Jonas Kurle [ctb], Moritz Schwarz [ctb] |
Maintainer: | Genaro Sucarrat <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.38 |
Built: | 2024-12-24 04:44:09 UTC |
Source: | https://github.com/gsucarrat/gets |
The gets package provides functions and methods for General-to-Specific (GETS) and Indicator Saturation (ISAT) modelling. GETS modelling is a powerful and flexible variable selection algorithm that returns a parsimonious and interpretable model. It is ideally suited for the development of models that can be used for counterfactual and predictive scenario analysis (e.g. conditional forecasting). ISAT modelling provides a comprehensive, flexible and powerful approach to the identification of structural breaks and outliers.
The code of the package originated in relation with the research project G. Sucarrat and A. Escribano (2012). In 2014, Felix Pretis and James Reade joined for the development of the isat
code and related functions. Moritz Schwarz and Jonas Kurle joined the development team in 2020.
Version: | 0.38 |
Date: | 2024-07-11 |
Licence: | GPL-2 |
In the package gets, GETS methods are available for the following model classes:
Linear regression, both static and dynamic, see arx
, gets.arx
and gets.lm
Variance models, both static and dynamic, see arx
Logit models, both static and dynamic, see logitx
and gets.logitx
The function arx
estimates a static linear regression, or a dynamic AR-X model with (optionally) a log-variance specification. The log-variance specification can either be static or a dynamic log-variance model with covariates (a 'log-ARCH-X' model). For the statistical details of the model, see Section 4 in Pretis, Reade and Sucarrat (2018). The function logitx
estimates a static logit model, or a dynamic logit model with covariates (optionally). For complete user-specified GETS modelling, see getsFun
.
ISAT methods are available for:
Linear regression, both static and dynamic, see isat
The isat
function undertakes GETS model selection of an indicator saturated mean specification. Extraction functions (mainly S3 methods) are also available, together with additional auxiliary functions. For complete user-specified ISAT modelling, see blocksFun
.
Two vignettes are available in the package (type browseVignettes("gets")
to access them):
An introduction to the gets package
User-Specified General-to-Specific (GETS) and Indicator Saturation (ISAT) Methods
The former is a mildly modified version of Pretis, Reade and Sucarrat (2018), whereas the latter is an updated version of Sucarrat (2020).
Jonas Kurle: | https://www.jonaskurle.com/ | |
Felix Pretis: | https://felixpretis.climateeconometrics.org/ | |
James Reade: | https://sites.google.com/site/jjamesreade/ | |
Moritz Schwarz: | https://www.inet.ox.ac.uk/people/moritz-schwarz | |
Genaro Sucarrat: | https://www.sucarrat.net/ | |
Maintainer: Genaro Sucarrat
Jurgen A. Doornik, David F. Hendry, and Felix Pretis (2013): 'Step Indicator Saturation', Oxford Economics Discussion Paper, 658. https://ideas.repec.org/p/oxf/wpaper/658.html
Felix Pretis, James Reade and Genaro Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. doi:10.18637/jss.v086.i03
Carlos Santos, David F. Hendry and Soren Johansen (2007): 'Automatic selection of indicators in a fully saturated regression'. Computational Statistics, vol 23:1, pp.317-335. doi:10.1007/s00180-007-0054-z
Genaro Sucarrat (2020): 'User-Specified General-to-Specific and Indicator Saturation Methods'. The R Journal 12:2, pages 388-401. https://journal.r-project.org/archive/2021/RJ-2021-024/
Genaro Sucarrat and Alvaro Escribano (2012): 'Automated Financial Model Selection: General-to-Specific Modelling of the Mean and Volatility Specifications', Oxford Bulletin of Economics and Statistics 74, Issue 5 (October), pp. 716-735.
arx
, gets.arx
, getsm
, getsv
, isat
, getsFun
, blocksFun
##Simulate from an AR(1): set.seed(123) y <- arima.sim(list(ar=0.4), 60) ##Estimate an AR(2) with intercept as mean specification ##and a log-ARCH(4) as log-volatility specification: myModel <- arx(y, mc=TRUE, ar=1:2, arch=1:4) ##GETS modelling of the mean of myModel: simpleMean <- getsm(myModel) ##GETS modelling of the log-variance of myModel: simpleVar <- getsv(myModel) ##results: print(simpleMean) print(simpleVar) ##step indicator saturation of an iid normal series: set.seed(123) y <- rnorm(30) isat(y)
##Simulate from an AR(1): set.seed(123) y <- arima.sim(list(ar=0.4), 60) ##Estimate an AR(2) with intercept as mean specification ##and a log-ARCH(4) as log-volatility specification: myModel <- arx(y, mc=TRUE, ar=1:2, arch=1:4) ##GETS modelling of the mean of myModel: simpleMean <- getsm(myModel) ##GETS modelling of the log-variance of myModel: simpleVar <- getsv(myModel) ##results: print(simpleMean) print(simpleVar) ##step indicator saturation of an iid normal series: set.seed(123) y <- rnorm(30) isat(y)
Estimation by OLS, two-step OLS if a variance specification is specified: In the first the mean specification (AR-X) is estimated, whereas in the second step the log-variance specification (log-ARCH-X) is estimated.
The AR-X mean specification can contain an intercept, AR-terms, lagged moving averages of the regressand and other conditioning covariates ('X'). The log-variance specification can contain log-ARCH terms, asymmetry or 'leverage' terms, log(EqWMA) where EqWMA is a lagged equally weighted moving average of past squared residuals (a volatility proxy) and other conditioning covariates ('X').
arx(y, mc=TRUE, ar=NULL, ewma=NULL, mxreg=NULL, vc=FALSE, arch=NULL, asym=NULL, log.ewma=NULL, vxreg=NULL, zero.adj=NULL, vc.adj=TRUE, vcov.type=c("ordinary", "white", "newey-west"), qstat.options=NULL, normality.JarqueB=FALSE, user.estimator=NULL, user.diagnostics=NULL, tol=1e-07, LAPACK=FALSE, singular.ok=TRUE, plot=NULL)
arx(y, mc=TRUE, ar=NULL, ewma=NULL, mxreg=NULL, vc=FALSE, arch=NULL, asym=NULL, log.ewma=NULL, vxreg=NULL, zero.adj=NULL, vc.adj=TRUE, vcov.type=c("ordinary", "white", "newey-west"), qstat.options=NULL, normality.JarqueB=FALSE, user.estimator=NULL, user.diagnostics=NULL, tol=1e-07, LAPACK=FALSE, singular.ok=TRUE, plot=NULL)
y |
|
mc |
|
ar |
either |
ewma |
either |
mxreg |
either |
vc |
|
arch |
either |
asym |
either |
log.ewma |
either |
vxreg |
either |
zero.adj |
|
vc.adj |
|
vcov.type |
|
qstat.options |
|
normality.JarqueB |
|
user.estimator |
|
user.diagnostics |
|
tol |
|
LAPACK |
|
singular.ok |
|
plot |
|
For an overview of the AR-X model with log-ARCH-X errors, see Pretis, Reade and Sucarrat (2018): doi:10.18637/jss.v086.i03.
The arguments user.estimator
and user.diagnostics
enables the specification of user-defined estimators and user-defined diagnostics. To this end, the principles of the same arguments in getsFun
are followed, see its documentation under "Details", and Sucarrat (2020): https://journal.r-project.org/archive/2021/RJ-2021-024/.
A list of class 'arx'
Jonas Kurle: | https://www.jonaskurle.com/ | |
Moritz Schwarz: | https://www.inet.ox.ac.uk/people/moritz-schwarz | |
Genaro Sucarrat: | https://www.sucarrat.net/ | |
C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259. doi:10.1016/0165-1765(80)90024-5
Felix Pretis, James Reade and Genaro Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. doi:10.18637/jss.v086.i03
Genaro Sucarrat (2020): 'User-Specified General-to-Specific and Indicator Saturation Methods'. The R Journal 12:2, pages 388-401. https://journal.r-project.org/archive/2021/RJ-2021-024/
Halbert White (1980): 'A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity', Econometrica 48, pp. 817-838.
Whitney K. Newey and Kenned D. West (1987): 'A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix', Econometrica 55, pp. 703-708.
Extraction functions (mostly S3 methods): coef.arx
, ES
, fitted.arx
, plot.arx
, print.arx
, recursive
, residuals.arx
, sigma.arx
, rsquared
,summary.arx
, VaR
and vcov.arx
Related functions: getsm
, getsv
, isat
##Simulate from an AR(1): set.seed(123) y <- arima.sim(list(ar=0.4), 70) ##estimate an AR(2) with intercept: arx(y, mc=TRUE, ar=1:2) ##Simulate four independent Gaussian regressors: xregs <- matrix(rnorm(4*70), 70, 4) ##estimate an AR(2) with intercept and four conditioning ##regressors in the mean: arx(y, ar=1:2, mxreg=xregs) ##estimate a log-variance specification with a log-ARCH(4) ##structure: arx(y, mc=FALSE, arch=1:4) ##estimate a log-variance specification with a log-ARCH(4) ##structure and an asymmetry/leverage term: arx(y, mc=FALSE, arch=1:4, asym=1) ##estimate a log-variance specification with a log-ARCH(4) ##structure, an asymmetry or leverage term, a 10-period log(EWMA) as ##volatility proxy, and the log of the squareds of the conditioning ##regressors in the log-variance specification: arx(y, mc=FALSE, arch=1:4, asym=1, log.ewma=list(length=10), vxreg=log(xregs^2)) ##estimate an AR(2) with intercept and four conditioning regressors ##in the mean, and a log-variance specification with a log-ARCH(4) ##structure, an asymmetry or leverage term, a 10-period log(EWMA) as ##volatility proxy, and the log of the squareds of the conditioning ##regressors in the log-variance specification: arx(y, ar=1:2, mxreg=xregs, arch=1:4, asym=1, log.ewma=list(length=10), vxreg=log(xregs^2))
##Simulate from an AR(1): set.seed(123) y <- arima.sim(list(ar=0.4), 70) ##estimate an AR(2) with intercept: arx(y, mc=TRUE, ar=1:2) ##Simulate four independent Gaussian regressors: xregs <- matrix(rnorm(4*70), 70, 4) ##estimate an AR(2) with intercept and four conditioning ##regressors in the mean: arx(y, ar=1:2, mxreg=xregs) ##estimate a log-variance specification with a log-ARCH(4) ##structure: arx(y, mc=FALSE, arch=1:4) ##estimate a log-variance specification with a log-ARCH(4) ##structure and an asymmetry/leverage term: arx(y, mc=FALSE, arch=1:4, asym=1) ##estimate a log-variance specification with a log-ARCH(4) ##structure, an asymmetry or leverage term, a 10-period log(EWMA) as ##volatility proxy, and the log of the squareds of the conditioning ##regressors in the log-variance specification: arx(y, mc=FALSE, arch=1:4, asym=1, log.ewma=list(length=10), vxreg=log(xregs^2)) ##estimate an AR(2) with intercept and four conditioning regressors ##in the mean, and a log-variance specification with a log-ARCH(4) ##structure, an asymmetry or leverage term, a 10-period log(EWMA) as ##volatility proxy, and the log of the squareds of the conditioning ##regressors in the log-variance specification: arx(y, ar=1:2, mxreg=xregs, arch=1:4, asym=1, log.ewma=list(length=10), vxreg=log(xregs^2))
The function as.arx
is a generic function and its methods returns an object of class arx
.
as.arx(object, ...) ##S3 method for objects of class 'lm': ## S3 method for class 'lm' as.arx(object, ...)
as.arx(object, ...) ##S3 method for objects of class 'lm': ## S3 method for class 'lm' as.arx(object, ...)
object |
object of class |
... |
arguments passed on to and from other methods |
Object of class arx
Genaro Sucarrat http://www.sucarrat.net/
##generate some data: set.seed(123) #for reproducibility y <- rnorm(30) #generate Y x <- matrix(rnorm(30*10), 30, 10) #create matrix of Xs ##typical situation: mymodel <- lm(y ~ x) as.arx(mymodel) ##use hetero-robust vcov: as.arx(mymodel, vcov.type="white") ##add ar-dynamics: as.arx(mymodel, ar=1:2) ##add log-variance specification: as.arx(mymodel, arch=1:2)
##generate some data: set.seed(123) #for reproducibility y <- rnorm(30) #generate Y x <- matrix(rnorm(30*10), 30, 10) #create matrix of Xs ##typical situation: mymodel <- lm(y ~ x) as.arx(mymodel) ##use hetero-robust vcov: as.arx(mymodel, vcov.type="white") ##add ar-dynamics: as.arx(mymodel, ar=1:2) ##add log-variance specification: as.arx(mymodel, arch=1:2)
Convert 'arx'/'gets'/'isat' object to 'lm' object
as.lm(object)
as.lm(object)
object |
Object of class lm
Moritz Schwarz, https://www.inet.ox.ac.uk/people/moritz-schwarz
Genaro Sucarrat https://www.sucarrat.net/
##generate data, estimate model of class 'arx': set.seed(123) y <- rnorm(30) arxmod <- arx(y, mc=TRUE, ar=1:3) as.lm(arxmod) ##from 'gets' to 'lm': getsmod <- getsm(arxmod, keep=1) as.lm(getsmod) ##from 'isat' to 'lm': isatmod <- isat(y) as.lm(isatmod)
##generate data, estimate model of class 'arx': set.seed(123) y <- rnorm(30) arxmod <- arx(y, mc=TRUE, ar=1:3) as.lm(arxmod) ##from 'gets' to 'lm': getsmod <- getsm(arxmod, keep=1) as.lm(getsmod) ##from 'isat' to 'lm': isatmod <- isat(y) as.lm(isatmod)
Takes a vector of coefficients (valid for orthogonal variables), their standard errors, the significance level the variables were selected at, and the sample size, to return bias-corrected coefficient estimates to account for the bias induced by model selection.
biascorr(b, b.se, p.alpha, T)
biascorr(b, b.se, p.alpha, T)
b |
a Kx1 vector of coefficients. |
b.se |
a Kx1 vector of standard errors of the coefficients in 'b'. |
p.alpha |
numeric value between 0 and 1, the significance level at which selection was conducted. |
T |
integer, the sample size of the original model selection regression. |
The function computes the bias-corrected estimates of coefficients in regression models post general-to-specific model selection using the approach by Hendry and Krolzig (2005). The results are valid for orthogonal regressors only. Bias correction can be applied to the coefficient path in isat
models where the only additional covariate besides indicators is an intercept - see Pretis (2015).
Returns a Kx3 matrix, where the first column lists the original coefficients, the second column the one-step corrected coefficients, and the third column the two-step bias-corrected coefficients.
Felix Pretis, https://felixpretis.climateeconometrics.org/
Hendry, D.F. and Krolzig, H.M. (2005): 'The properties of automatic Gets modelling'. Economic Journal, 115, C32-C61.
Pretis, F. (2015): 'Testing for time-varying predictive accuracy using bias-corrected indicator saturation'. Oxford Department of Economics Discussion Paper.
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44
isat
, coef.gets
, plot.gets
, isatvar
, isattest
###Bias-correction of the coefficient path of the Nile data #nile <- as.zoo(Nile) #isat.nile <- isat(nile, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005) #var <- isatvar(isat.nile) #biascorr(b=var$const.path, b.se=var$const.se, p.alpha=0.005, T=length(var$const.path)) ##Bias-correction of the coefficient path on artificial data #set.seed(123) #d <- matrix(0,100,1) #d[35:55] <- 1 #e <- rnorm(100, 0, 1) #y <- d*1 +e #ys <- isat(y, sis=TRUE, iis=FALSE, t.pval=0.01) #var <- isatvar(ys) #biascorr(b=var$const.path, b.se=var$const.se, p.alpha=0.01, T=length(var$const.path))
###Bias-correction of the coefficient path of the Nile data #nile <- as.zoo(Nile) #isat.nile <- isat(nile, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005) #var <- isatvar(isat.nile) #biascorr(b=var$const.path, b.se=var$const.se, p.alpha=0.005, T=length(var$const.path)) ##Bias-correction of the coefficient path on artificial data #set.seed(123) #d <- matrix(0,100,1) #d[35:55] <- 1 #e <- rnorm(100, 0, 1) #y <- d*1 +e #ys <- isat(y, sis=TRUE, iis=FALSE, t.pval=0.01) #var <- isatvar(ys) #biascorr(b=var$const.path, b.se=var$const.se, p.alpha=0.01, T=length(var$const.path))
Auxiliary function (i.e. not intended for the average user) that enables block-based GETS-modelling with user-specified estimator, diagnostics and goodness-of-fit criterion.
blocksFun(y, x, untransformed.residuals=NULL, blocks=NULL, no.of.blocks=NULL, max.block.size=30, ratio.threshold=0.8, gets.of.union=TRUE, force.invertibility=FALSE, user.estimator=list(name="ols"), t.pval=0.001, wald.pval=t.pval, do.pet=FALSE, ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL, user.diagnostics=NULL, gof.function=list(name="infocrit"), gof.method=c("min", "max"), keep=NULL, include.gum=FALSE, include.1cut=FALSE, include.empty=FALSE, max.paths=NULL, turbo=FALSE, parallel.options=NULL, tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, alarm=FALSE)
blocksFun(y, x, untransformed.residuals=NULL, blocks=NULL, no.of.blocks=NULL, max.block.size=30, ratio.threshold=0.8, gets.of.union=TRUE, force.invertibility=FALSE, user.estimator=list(name="ols"), t.pval=0.001, wald.pval=t.pval, do.pet=FALSE, ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL, user.diagnostics=NULL, gof.function=list(name="infocrit"), gof.method=c("min", "max"), keep=NULL, include.gum=FALSE, include.1cut=FALSE, include.empty=FALSE, max.paths=NULL, turbo=FALSE, parallel.options=NULL, tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, alarm=FALSE)
y |
a numeric vector (with no missing values, i.e. no non-numeric 'holes') |
x |
a |
untransformed.residuals |
|
blocks |
|
no.of.blocks |
|
max.block.size |
|
ratio.threshold |
|
gets.of.union |
|
force.invertibility |
|
user.estimator |
|
t.pval |
|
wald.pval |
|
do.pet |
|
ar.LjungB |
a two element |
arch.LjungB |
a two element |
normality.JarqueB |
|
user.diagnostics |
|
gof.function |
|
gof.method |
|
keep |
|
include.gum |
|
include.1cut |
|
include.empty |
|
max.paths |
|
turbo |
|
parallel.options |
|
tol |
|
LAPACK |
currently not used |
max.regs |
|
print.searchinfo |
|
alarm |
|
blocksFun
undertakes block-based GETS modelling by a repeated but structured call to getsFun
. For the details of how to user-specify an estimator via user.estimator
, diagnostics via
user.diagnostics
and a goodness-of-fit function via gof.function
, see documentation of getsFun
under "Details".
The algorithm of blocksFun
is similar to that of isat
, but more flexible. The main use of blocksFun
is the creation of user-specified methods that employs block-based GETS modelling, e.g. indicator saturation techniques.
A list
with the results of the block-based GETS-modelling.
Genaro Sucarrat, with contributions from Jonas kurle, Felix Pretis and James Reade
F. Pretis, J. Reade and G. Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44
G. sucarrat (2020): 'User-Specified General-to-Specific and Indicator Saturation Methods'. The R Journal 12 issue 2, pp. 388-401, https://journal.r-project.org/archive/2021/RJ-2021-024/
getsFun
, ols
, diagnostics
, infocrit
and isat
## more variables than observations: y <- rnorm(20) x <- matrix(rnorm(length(y)*40), length(y), 40) blocksFun(y, x) ## 'x' as list of matrices: z <- matrix(rnorm(length(y)*40), length(y), 40) blocksFun(y, list(x,z)) ## ensure regressor no. 3 in matrix no. 2 is not removed: blocksFun(y, list(x,z), keep=list(integer(0), 3))
## more variables than observations: y <- rnorm(20) x <- matrix(rnorm(length(y)*40), length(y), 40) blocksFun(y, x) ## 'x' as list of matrices: z <- matrix(rnorm(length(y)*40), length(y), 40) blocksFun(y, list(x,z)) ## ensure regressor no. 3 in matrix no. 2 is not removed: blocksFun(y, list(x,z), keep=list(integer(0), 3))
Extraction functions for objects of class 'arx'
## S3 method for class 'arx' coef(object, spec=NULL, ...) ## S3 method for class 'arx' fitted(object, spec=NULL, ...) ## S3 method for class 'arx' logLik(object, ...) ## S3 method for class 'arx' model.matrix(object, spec=c("mean","variance"), response=FALSE, as.zoo=TRUE, ...) ## S3 method for class 'arx' nobs(object, spec=NULL, ...) ## S3 method for class 'arx' plot(x, spec=NULL, col=c("red","blue"), lty=c("solid","solid"), lwd=c(1,1), ...) ## S3 method for class 'arx' print(x, signif.stars=TRUE, ...) ## S3 method for class 'arx' residuals(object, std=FALSE, ...) ## S3 method for class 'arx' sigma(object, ...) ## S3 method for class 'arx' summary(object, ...) ## S3 method for class 'arx' vcov(object, spec=NULL, ...)
## S3 method for class 'arx' coef(object, spec=NULL, ...) ## S3 method for class 'arx' fitted(object, spec=NULL, ...) ## S3 method for class 'arx' logLik(object, ...) ## S3 method for class 'arx' model.matrix(object, spec=c("mean","variance"), response=FALSE, as.zoo=TRUE, ...) ## S3 method for class 'arx' nobs(object, spec=NULL, ...) ## S3 method for class 'arx' plot(x, spec=NULL, col=c("red","blue"), lty=c("solid","solid"), lwd=c(1,1), ...) ## S3 method for class 'arx' print(x, signif.stars=TRUE, ...) ## S3 method for class 'arx' residuals(object, std=FALSE, ...) ## S3 method for class 'arx' sigma(object, ...) ## S3 method for class 'arx' summary(object, ...) ## S3 method for class 'arx' vcov(object, spec=NULL, ...)
object |
an object of class 'arx' |
x |
an object of class 'arx' |
spec |
|
response |
|
as.zoo |
|
signif.stars |
|
std |
|
col |
colours of actual (default=blue) and fitted (default=red) lines |
lty |
types of actual (default=solid) and fitted (default=solid) lines |
lwd |
widths of actual (default=1) and fitted (default=1) lines |
... |
additional arguments |
coef: |
a numeric vector containing parameter estimates |
fitted: |
a |
logLik: |
log-likelihood (normal density) |
model.matrix: |
a matrix with the regressors and, optionally, the response |
nobs: |
the number of observations |
plot: |
a plot of the fitted values and the residuals |
print: |
a print of the estimation results |
residuals: |
a |
sigma: |
the regression standard error ('SE of regression') |
summary: |
a print of the items in the |
vcov: |
variance-covariance matrix |
Felix Pretis, https://felixpretis.climateeconometrics.org/
James Reade, https://sites.google.com/site/jjamesreade/
Moritz Schwarz, https://www.inet.ox.ac.uk/people/moritz-schwarz
Genaro Sucarrat, http://www.sucarrat.net/
##simulate from an AR(1): set.seed(123) y <- arima.sim(list(ar=0.4), 40) ##simulate four independent Gaussian regressors: xregs <- matrix(rnorm(4*40), 40, 4) ##estimate an 'arx' model: An AR(2) with intercept and four conditioning ##regressors in the mean, and log-ARCH(3) in the variance: mymod <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs, arch=1:3) ##print results: print(mymod) ##plot the fitted vs. actual values, and the residuals: plot(mymod) ##print the entries of object 'mymod': summary(mymod) ##extract coefficient estimates (automatically determined): coef(mymod) ##extract mean coefficients only: coef(mymod, spec="mean") ##extract log-variance coefficients only: coef(mymod, spec="variance") ##extract all coefficient estimates: coef(mymod, spec="both") ##extract regression standard error: sigma(mymod) ##extract log-likelihood: logLik(mymod) ##extract variance-covariance matrix of mean equation: vcov(mymod) ##extract variance-covariance matrix of log-variance equation: vcov(mymod, spec="variance") ##extract and plot the fitted mean values (automatically determined): mfit <- fitted(mymod) plot(mfit) ##extract and plot the fitted variance values: vfit <- fitted(mymod, spec="variance") plot(vfit) ##extract and plot both the fitted mean and variance values: vfit <- fitted(mymod, spec="both") plot(vfit) ##extract and plot the fitted mean values: vfit <- fitted(mymod, spec="mean") plot(vfit) ##extract and plot residuals: epshat <- residuals(mymod) plot(epshat) ##extract and plot standardised residuals: zhat <- residuals(mymod, std=TRUE) plot(zhat)
##simulate from an AR(1): set.seed(123) y <- arima.sim(list(ar=0.4), 40) ##simulate four independent Gaussian regressors: xregs <- matrix(rnorm(4*40), 40, 4) ##estimate an 'arx' model: An AR(2) with intercept and four conditioning ##regressors in the mean, and log-ARCH(3) in the variance: mymod <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs, arch=1:3) ##print results: print(mymod) ##plot the fitted vs. actual values, and the residuals: plot(mymod) ##print the entries of object 'mymod': summary(mymod) ##extract coefficient estimates (automatically determined): coef(mymod) ##extract mean coefficients only: coef(mymod, spec="mean") ##extract log-variance coefficients only: coef(mymod, spec="variance") ##extract all coefficient estimates: coef(mymod, spec="both") ##extract regression standard error: sigma(mymod) ##extract log-likelihood: logLik(mymod) ##extract variance-covariance matrix of mean equation: vcov(mymod) ##extract variance-covariance matrix of log-variance equation: vcov(mymod, spec="variance") ##extract and plot the fitted mean values (automatically determined): mfit <- fitted(mymod) plot(mfit) ##extract and plot the fitted variance values: vfit <- fitted(mymod, spec="variance") plot(vfit) ##extract and plot both the fitted mean and variance values: vfit <- fitted(mymod, spec="both") plot(vfit) ##extract and plot the fitted mean values: vfit <- fitted(mymod, spec="mean") plot(vfit) ##extract and plot residuals: epshat <- residuals(mymod) plot(epshat) ##extract and plot standardised residuals: zhat <- residuals(mymod, std=TRUE) plot(zhat)
Extraction functions for objects of class 'gets'
## S3 method for class 'gets' coef(object, spec=NULL, ...) ## S3 method for class 'gets' fitted(object, spec=NULL, ...) ## S3 method for class 'gets' logLik(object, ...) ## S3 method for class 'gets' plot(x, spec=NULL, col=c("red","blue"), lty=c("solid","solid"), lwd=c(1,1), ...) ## S3 method for class 'gets' predict(object, spec=NULL, n.ahead=12, newmxreg=NULL, newvxreg=NULL, newindex=NULL, n.sim=5000, innov=NULL, probs=NULL, ci.levels=NULL, quantile.type=7, return=TRUE, verbose=FALSE, plot=NULL, plot.options=list(), ...) ## S3 method for class 'gets' print(x, signif.stars=TRUE, ...) ## S3 method for class 'gets' residuals(object, std=NULL, ...) ## S3 method for class 'gets' sigma(object, ...) ## S3 method for class 'gets' summary(object, ...) ## S3 method for class 'gets' vcov(object, spec=NULL, ...)
## S3 method for class 'gets' coef(object, spec=NULL, ...) ## S3 method for class 'gets' fitted(object, spec=NULL, ...) ## S3 method for class 'gets' logLik(object, ...) ## S3 method for class 'gets' plot(x, spec=NULL, col=c("red","blue"), lty=c("solid","solid"), lwd=c(1,1), ...) ## S3 method for class 'gets' predict(object, spec=NULL, n.ahead=12, newmxreg=NULL, newvxreg=NULL, newindex=NULL, n.sim=5000, innov=NULL, probs=NULL, ci.levels=NULL, quantile.type=7, return=TRUE, verbose=FALSE, plot=NULL, plot.options=list(), ...) ## S3 method for class 'gets' print(x, signif.stars=TRUE, ...) ## S3 method for class 'gets' residuals(object, std=NULL, ...) ## S3 method for class 'gets' sigma(object, ...) ## S3 method for class 'gets' summary(object, ...) ## S3 method for class 'gets' vcov(object, spec=NULL, ...)
object |
an object of class 'gets' |
x |
an object of class 'gets' |
spec |
NULL, "mean", "variance" or, in some instances, "both". When |
signif.stars |
|
std |
|
n.ahead |
|
newmxreg |
a |
newvxreg |
a |
newindex |
|
n.sim |
|
innov |
|
probs |
|
ci.levels |
|
quantile.type |
an integer between 1 and 9 that selects which algorithm to be used in computing the quantiles, see the argument |
return |
|
verbose |
|
plot |
|
plot.options |
a |
col |
colours of fitted (default=red) and actual (default=blue) lines |
lty |
types of fitted (default=solid) and actual (default=solid) lines |
lwd |
widths of fitted (default=1) and actual (default=1) lines |
... |
additional arguments |
The plot.options
argument is a list
that controls the prediction plot, see 'Details' in predict.arx
coef: |
a numeric vector containing parameter estimates |
fitted: |
a |
logLik: |
a numeric, the log-likelihood (normal density) |
plot: |
a plot of the fitted values and the residuals |
predict: |
a |
print: |
a print of the estimation results |
residuals: |
a |
sigma: |
the regression standard error ('SE of regression') |
summary: |
a print of the items in the |
vcov: |
a variance-covariance matrix |
Felix Pretis, https://felixpretis.climateeconometrics.org/
James Reade, https://sites.google.com/site/jjamesreade/
Moritz Schwarz, https://www.inet.ox.ac.uk/people/moritz-schwarz
Genaro Sucarrat, https://www.sucarrat.net/
##Simulate from an AR(1): set.seed(123) y <- arima.sim(list(ar=0.4), 100) ##Simulate four independent Gaussian regressors: xregs <- matrix(rnorm(4*100), 100, 4) ##estimate an AR(2) with intercept and four conditioning ##regressors in the mean, and a log-ARCH(3) in the variance: mymod <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs, arch=1:3) ##General-to-Specific (GETS) model selection of the mean: meanmod <- getsm(mymod) ##General-to-Specific (GETS) model selection of the variance: varmod <- getsv(mymod) ##print results: print(meanmod) print(varmod) ##plot the fitted vs. actual values, and the residuals: plot(meanmod) plot(varmod) ##generate and plot predictions of the mean: predict(meanmod, plot=TRUE) ##print the entries of object 'gets': summary(meanmod) summary(varmod) ##extract coefficients of the simplified (specific) model: coef(meanmod) #mean spec coef(varmod) #variance spec ##extract log-likelihood: logLik(mymod) ##extract coefficient-covariance matrix of simplified ##(specific) model: vcov(meanmod) #mean spec vcov(varmod) #variance spec ##extract and plot the fitted values: mfit <- fitted(meanmod) #mean fit plot(mfit) vfit <- fitted(varmod) #variance fit plot(vfit) ##extract and plot residuals: epshat <- residuals(meanmod) plot(epshat) ##extract and plot standardised residuals: zhat <- residuals(varmod) plot(zhat)
##Simulate from an AR(1): set.seed(123) y <- arima.sim(list(ar=0.4), 100) ##Simulate four independent Gaussian regressors: xregs <- matrix(rnorm(4*100), 100, 4) ##estimate an AR(2) with intercept and four conditioning ##regressors in the mean, and a log-ARCH(3) in the variance: mymod <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs, arch=1:3) ##General-to-Specific (GETS) model selection of the mean: meanmod <- getsm(mymod) ##General-to-Specific (GETS) model selection of the variance: varmod <- getsv(mymod) ##print results: print(meanmod) print(varmod) ##plot the fitted vs. actual values, and the residuals: plot(meanmod) plot(varmod) ##generate and plot predictions of the mean: predict(meanmod, plot=TRUE) ##print the entries of object 'gets': summary(meanmod) summary(varmod) ##extract coefficients of the simplified (specific) model: coef(meanmod) #mean spec coef(varmod) #variance spec ##extract log-likelihood: logLik(mymod) ##extract coefficient-covariance matrix of simplified ##(specific) model: vcov(meanmod) #mean spec vcov(varmod) #variance spec ##extract and plot the fitted values: mfit <- fitted(meanmod) #mean fit plot(mfit) vfit <- fitted(varmod) #variance fit plot(vfit) ##extract and plot residuals: epshat <- residuals(meanmod) plot(epshat) ##extract and plot standardised residuals: zhat <- residuals(varmod) plot(zhat)
Extraction functions for objects of class 'isat'
## S3 method for class 'isat' coef(object, ...) ## S3 method for class 'isat' fitted(object, ...) ## S3 method for class 'isat' logLik(object, ...) ## S3 method for class 'isat' plot(x, col=c("red","blue"), lty=c("solid","solid"), lwd=c(1,1), coef.path=TRUE, ...) ## S3 method for class 'isat' predict(object, n.ahead=12, newmxreg=NULL, newindex=NULL, n.sim=2000, probs=NULL, ci.levels=NULL, quantile.type=7, return=TRUE, verbose=FALSE, plot=NULL, plot.options=list(), ...) ## S3 method for class 'isat' print(x, signif.stars=TRUE, ...) ## S3 method for class 'isat' residuals(object, std=FALSE, ...) ## S3 method for class 'isat' sigma(object, ...) ## S3 method for class 'isat' summary(object, ...) ## S3 method for class 'isat' vcov(object, ...)
## S3 method for class 'isat' coef(object, ...) ## S3 method for class 'isat' fitted(object, ...) ## S3 method for class 'isat' logLik(object, ...) ## S3 method for class 'isat' plot(x, col=c("red","blue"), lty=c("solid","solid"), lwd=c(1,1), coef.path=TRUE, ...) ## S3 method for class 'isat' predict(object, n.ahead=12, newmxreg=NULL, newindex=NULL, n.sim=2000, probs=NULL, ci.levels=NULL, quantile.type=7, return=TRUE, verbose=FALSE, plot=NULL, plot.options=list(), ...) ## S3 method for class 'isat' print(x, signif.stars=TRUE, ...) ## S3 method for class 'isat' residuals(object, std=FALSE, ...) ## S3 method for class 'isat' sigma(object, ...) ## S3 method for class 'isat' summary(object, ...) ## S3 method for class 'isat' vcov(object, ...)
object |
an object of class 'isat' |
x |
an object of class 'isat' |
std |
logical. If |
n.ahead |
|
newmxreg |
a |
newindex |
|
n.sim |
|
probs |
|
ci.levels |
|
quantile.type |
an integer between 1 and 9 that selects which algorithm to be used in computing the quantiles, see the argument |
return |
logical. If |
verbose |
logical with default |
plot |
|
plot.options |
a |
col |
colours of fitted (default=red) and actual (default=blue) lines |
lty |
types of fitted (default=solid) and actual (default=solid) lines |
lwd |
widths of fitted (default=1) and actual (default=1) lines |
coef.path |
logical. Only applicable if there are retained indicators after the application of |
signif.stars |
|
... |
additional arguments |
The plot.options
argument is a list
that controls the prediction plot, see 'Details' in predict.arx
coef: |
numeric vector containing parameter estimates |
fitted: |
a |
logLik: |
a numeric, the log-likelihood (normal density) |
plot: |
plot of the fitted values and the residuals |
predict: |
a |
print: |
a print of the estimation results |
residuals: |
a |
sigma: |
the regression standard error ('SE of regression') |
summary: |
a print of the items in the |
vcov: |
variance-covariance matrix |
Felix Pretis, https://felixpretis.climateeconometrics.org/
James Reade, https://sites.google.com/site/jjamesreade/
Moritz Schwarz, https://www.inet.ox.ac.uk/people/moritz-schwarz
Genaro Sucarrat, https://www.sucarrat.net/
paths
, terminals
, coef.gets
, getsm
, arx
##step indicator saturation: set.seed(123) y <- rnorm(30) isatmod <- isat(y) ##print results: print(isatmod) ##plot the fitted vs. actual values, and the residuals: plot(isatmod) ##print the entries of object 'isatmod': summary(isatmod) ##extract coefficients of the simplified (specific) model: coef(isatmod) ##extract log-likelihood: logLik(isatmod) ##extract the coefficient-covariance matrix of simplified ##(specific) model: vcov(isatmod) ##extract and plot the fitted values: mfit <- fitted(isatmod) plot(mfit) ##extract and plot (mean) residuals: epshat <- residuals(isatmod) plot(epshat) ##extract and plot standardised residuals: zhat <- residuals(isatmod, std=TRUE) plot(zhat) ##generate forecasts of the simplified (specific) model: predict(isatmod, newmxreg=matrix(1,12,1), plot=TRUE)
##step indicator saturation: set.seed(123) y <- rnorm(30) isatmod <- isat(y) ##print results: print(isatmod) ##plot the fitted vs. actual values, and the residuals: plot(isatmod) ##print the entries of object 'isatmod': summary(isatmod) ##extract coefficients of the simplified (specific) model: coef(isatmod) ##extract log-likelihood: logLik(isatmod) ##extract the coefficient-covariance matrix of simplified ##(specific) model: vcov(isatmod) ##extract and plot the fitted values: mfit <- fitted(isatmod) plot(mfit) ##extract and plot (mean) residuals: epshat <- residuals(isatmod) plot(epshat) ##extract and plot standardised residuals: zhat <- residuals(isatmod, std=TRUE) plot(zhat) ##generate forecasts of the simplified (specific) model: predict(isatmod, newmxreg=matrix(1,12,1), plot=TRUE)
Methods and extraction functions for 'larch' objects
## S3 method for class 'larch' coef(object, ...) ## S3 method for class 'larch' fitted(object, ...) ## S3 method for class 'larch' logLik(object, ...) ## S3 method for class 'larch' model.matrix(object, response=FALSE, as.zoo=TRUE, ...) ## S3 method for class 'larch' nobs(object, ...) ## S3 method for class 'larch' plot(x, col=c("red","blue"), lty=c("solid","solid"), lwd=c(1,1), ...) ## S3 method for class 'larch' print(x, signif.stars=TRUE, verbose=FALSE, ...) ## S3 method for class 'larch' residuals(object, ...) ## S3 method for class 'larch' summary(object, ...) ## S3 method for class 'larch' toLatex(object, ...) ## S3 method for class 'larch' vcov(object, ...)
## S3 method for class 'larch' coef(object, ...) ## S3 method for class 'larch' fitted(object, ...) ## S3 method for class 'larch' logLik(object, ...) ## S3 method for class 'larch' model.matrix(object, response=FALSE, as.zoo=TRUE, ...) ## S3 method for class 'larch' nobs(object, ...) ## S3 method for class 'larch' plot(x, col=c("red","blue"), lty=c("solid","solid"), lwd=c(1,1), ...) ## S3 method for class 'larch' print(x, signif.stars=TRUE, verbose=FALSE, ...) ## S3 method for class 'larch' residuals(object, ...) ## S3 method for class 'larch' summary(object, ...) ## S3 method for class 'larch' toLatex(object, ...) ## S3 method for class 'larch' vcov(object, ...)
object |
an object of class 'larch' |
x |
an object of class 'larch' |
response |
logical. If |
as.zoo |
logical. If |
col |
a character vector of length two with the colours of actual (default=blue) and fitted (default=red) lines |
lty |
types of actual (default=solid) and fitted (default=solid) lines |
lwd |
widths of actual (default=1) and fitted (default=1) lines |
signif.stars |
logical. If |
verbose |
logical. If |
... |
additional arguments |
coef: |
a vector containing the parameter estimates |
fitted: |
a |
logLik: |
the log-likelihood (normal density) |
model.matrix: |
the model matrix (see |
nobs: |
the number of observations |
plot: |
a plot of the fitted values and the residuals |
print: |
a print of the estimation results and, if |
residuals: |
a |
summary: |
a print of the items in the |
toLatex: |
a LaTeX print of the estimation results (equation format) |
vcov: |
variance-covariance matrix |
Genaro Sucarrat, https://www.sucarrat.net/
##simulate some data: set.seed(123) e <- rnorm(40) x <- matrix(rnorm(40*2), 40, 2) ##estimate a log-ARCH(3)-X model: mymod <- larch(e, arch=1:3, vxreg=x) ##print results: print(mymod) ##LaTeX print of the estimation results (equation format): toLatex(mymod) ##plot the fitted vs. actual values, and the standardised residuals: plot(mymod) ##extract coefficient estimates (automatically determined): coef(mymod) ##extract the fitted values: fitted(mymod) ##extract the standardised residuals: residuals(mymod) ##extract variance-covariance matrix: vcov(mymod) ##extract log-likelihood (based on the normal density): logLik(mymod) ##extract the model matrix of the model: model.matrix(mymod) ##print the entries of object 'mymod': summary(mymod)
##simulate some data: set.seed(123) e <- rnorm(40) x <- matrix(rnorm(40*2), 40, 2) ##estimate a log-ARCH(3)-X model: mymod <- larch(e, arch=1:3, vxreg=x) ##print results: print(mymod) ##LaTeX print of the estimation results (equation format): toLatex(mymod) ##plot the fitted vs. actual values, and the standardised residuals: plot(mymod) ##extract coefficient estimates (automatically determined): coef(mymod) ##extract the fitted values: fitted(mymod) ##extract the standardised residuals: residuals(mymod) ##extract variance-covariance matrix: vcov(mymod) ##extract log-likelihood (based on the normal density): logLik(mymod) ##extract the model matrix of the model: model.matrix(mymod) ##print the entries of object 'mymod': summary(mymod)
Extraction functions (of type S3 methods) for objects of class 'logitx'
## S3 method for class 'logitx' coef(object, ...) ## S3 method for class 'logitx' fitted(object, zero.prob=FALSE, ...) ## S3 method for class 'logitx' logLik(object, ...) ## S3 method for class 'logitx' plot(x, ...) ## S3 method for class 'logitx' print(x, signif.stars=TRUE, ...) ## S3 method for class 'logitx' summary(object, ...) ## S3 method for class 'logitx' toLatex(object, digits = 4, gof = TRUE, nonumber = FALSE, nobs = "T", ...) ## S3 method for class 'logitx' vcov(object, ...)
## S3 method for class 'logitx' coef(object, ...) ## S3 method for class 'logitx' fitted(object, zero.prob=FALSE, ...) ## S3 method for class 'logitx' logLik(object, ...) ## S3 method for class 'logitx' plot(x, ...) ## S3 method for class 'logitx' print(x, signif.stars=TRUE, ...) ## S3 method for class 'logitx' summary(object, ...) ## S3 method for class 'logitx' toLatex(object, digits = 4, gof = TRUE, nonumber = FALSE, nobs = "T", ...) ## S3 method for class 'logitx' vcov(object, ...)
object |
an object of class 'logitx' |
x |
an object of class 'logitx' |
zero.prob |
|
signif.stars |
|
digits |
integer, the number of digits in the LaTeX print |
gof |
logical that determines whether goodness-of-fit information should be included in the LaTeX print |
nonumber |
logical that determines whether a "nonumber" tag should be added to each equation in the LaTeX print |
nobs |
character that determines the label for the number of observations in the LaTeX print |
... |
additional arguments |
Various, depending on the method
Genaro Sucarrat, http://www.sucarrat.net/
logitx
, logitxSim
, gets.logitx
##simulate from ar(1): set.seed(123) #for reproducibility y <- logitxSim(100, ar=0.3) ##estimate and store result: mymod <- logitx(y, ar=1) ##extract stuff: coef(mymod) fitted(mymod) logLik(mymod) plot(mymod) print(mymod) summary(mymod) toLatex(mymod)
##simulate from ar(1): set.seed(123) #for reproducibility y <- logitxSim(100, ar=0.3) ##estimate and store result: mymod <- logitx(y, ar=1) ##extract stuff: coef(mymod) fitted(mymod) logLik(mymod) plot(mymod) print(mymod) summary(mymod) toLatex(mymod)
Auxiliary function (i.e. not intended for the average user) called by the arx
, getsm
, getsv
, isat
, getsFun
and blocksFun
functions. The diagnostics
function undertakes tests for autocorrelation, ARCH and non-normality in a residual series, and user-defined diagnostics provided via the user.fun
argument (see details). The autocorrelation and ARCH tests are conducted as Ljung and Box (1979) tests for autocorrelation in the residuals and squared residuals, respectively, whereas the test for non-normality is that of Jarque and Bera (1980).
diagnostics(x, ar.LjungB=c(1, 0.025), arch.LjungB=c(1, 0.025), normality.JarqueB=NULL, verbose=TRUE, user.fun=NULL, ...)
diagnostics(x, ar.LjungB=c(1, 0.025), arch.LjungB=c(1, 0.025), normality.JarqueB=NULL, verbose=TRUE, user.fun=NULL, ...)
x |
a |
ar.LjungB |
a two element vector or |
arch.LjungB |
a two element vector or |
normality.JarqueB |
|
verbose |
logical. If |
user.fun |
|
... |
further arguments (ignored) to accommodate deleted arguments from past versions of the functions |
The argument user.fun
enables the user to specify additional diagnostics. To do this, the argument should be a list
with at least one entry, name
(of class character
), that contains the name of the user-defined function. The call to this function is executed with do.call
, whose default value on envir
is parent.frame()
. Usually, this will be the global environment (.GlobalEnv
), but it can be changed by adding an entry named envir
to the list that indicates where the user-defined function resides. If the verbose
argument is set to FALSE
, then an entry named pval
must be provided. This entry should contain the chosen significance level or levels, i.e. either a scalar or a vector of length equal to the number of p-values returned by the user-defined diagnostics function (see examples). The user can also specify whether a rejection of the tests should cause the diagnostics to fail (default behaviour) or whether a rejection is desirable. For that purpose, a named entry is.reject.bad
can be added that stores a logical vector of length equal to the number of tests conducted in the user diagnostics function. The first entry of the vector governs the diagnostic decision for the first row that the user diagnostics function returns, the second entry the decision for the second row etc. Additional entries in the list
are passed on as arguments to the user-defined function.
The user-defined function should refer to the named items of the estimation result x
(see examples), and the value returned by the user-defined function should be a matrix of dimension m x 3. Here, m is the number of diagnostic tests performed by the user-defined function. For example, if only a single test is performed, then m = 1 and so the returned value should be a 1 x 3 matrix (or a vector of length 3). The three columns of the m x 3 matrix should contain, in the following order, 1) the value(s) of the test-statistic(s) (or NA
), 2) the degree(s) of freedom(s) (or NA
) of the tests, and 3) the p-value(s) of the test(s). When checking whether the model passes the diagnostics or not, the p-value(s) is(are) checked against the value(s) in the entry named pval
in the list
provided to user.fun
. By default, a calculated p-value below the corresponding element in pval
causes the diagnostics to fail. If a named entry is.reject.bad
exists, this decision rule is only applied to tests whose corresponding entry is TRUE
while the decision rule is reversed for those with entry FALSE
. For these tests, the diagnostics fail if the hypothesis cannot be rejected.
verbose=TRUE |
a |
verbose=FALSE |
a |
Genaro Sucarrat, http://www.sucarrat.net/
Jonas Kurle, https://www.jonaskurle.com/
C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259
G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270
arx
, getsm
, getsv
, isat
, getsFun
, blocksFun
##generate some data: set.seed(123) vY <- rnorm(20) #the regressand mX <- matrix(rnorm(3*20), 20, 3) #the regressors est <- ols(vY,mX) ##return a data-frame with autocorrelation and ARCH diagnostics (default), ##and check whether they pass (the default p-value is 0.025): diagnostics(est) diagnostics(est, verbose=FALSE) ##add the Jarque-Bera normality test to the diagnostics (w/p-value=0.05): diagnostics(est, normality.JarqueB=0.05) diagnostics(est, normality.JarqueB=0.05, verbose=FALSE) ##user-defined Shapiro-Wilks test for non-normality of the residuals: SWtest <- function(x, ...){ tmp <- shapiro.test(x$residuals) return( c(tmp$statistic, NA, tmp$p.value) ) } diagnostics(est, user.fun=list(name="SWtest", pval=0.05)) diagnostics(est, user.fun=list(name="SWtest", pval=0.05), verbose=FALSE) ##user-defined test but diagnostics fail if do not reject (illustration only) diagnostics(est, user.fun=list(name="SWtest", pval=0.05, is.reject.bad = FALSE)) diagnostics(est, user.fun=list(name="SWtest", pval=0.05, is.reject.bad = FALSE), verbose=FALSE)
##generate some data: set.seed(123) vY <- rnorm(20) #the regressand mX <- matrix(rnorm(3*20), 20, 3) #the regressors est <- ols(vY,mX) ##return a data-frame with autocorrelation and ARCH diagnostics (default), ##and check whether they pass (the default p-value is 0.025): diagnostics(est) diagnostics(est, verbose=FALSE) ##add the Jarque-Bera normality test to the diagnostics (w/p-value=0.05): diagnostics(est, normality.JarqueB=0.05) diagnostics(est, normality.JarqueB=0.05, verbose=FALSE) ##user-defined Shapiro-Wilks test for non-normality of the residuals: SWtest <- function(x, ...){ tmp <- shapiro.test(x$residuals) return( c(tmp$statistic, NA, tmp$p.value) ) } diagnostics(est, user.fun=list(name="SWtest", pval=0.05)) diagnostics(est, user.fun=list(name="SWtest", pval=0.05), verbose=FALSE) ##user-defined test but diagnostics fail if do not reject (illustration only) diagnostics(est, user.fun=list(name="SWtest", pval=0.05, is.reject.bad = FALSE)) diagnostics(est, user.fun=list(name="SWtest", pval=0.05, is.reject.bad = FALSE), verbose=FALSE)
Implements the Jiao-Pretis-Schwarz test for coefficient distortion due to outliers by comparing coefficient estimates obtained using OLS to estimates obtained using the robust IIS estimator implemented using isat
. See the referenced Jiao-Pretis-Schwarz Paper below for more information.
distorttest(x, coef = "all")
distorttest(x, coef = "all")
x |
object of class |
coef |
Either "all" (Default) to test the distortion on all coefficients or a character vector of explanatory variable names. |
Object of class isat
Xiyu Jiao https://sites.google.com/view/xiyujiao
Felix Pretis https://felixpretis.climateeconometrics.org/
Moritz Schwarz https://moritzschwarz.org
Xiyu Jiao, Felix Pretis,and Moritz Schwarz. Testing for Coefficient Distortion due to Outliers with an Application to the Economic Impacts of Climate Change. Available at SSRN: https://www.ssrn.com/abstract=3915040 or doi:10.2139/ssrn.3915040
## Not run: data(Nile) nile <- isat(Nile, sis=FALSE, iis=TRUE, plot=TRUE, t.pval=0.01) distorttest(nile) data("hpdata") # Another example with co-variates dat <- hpdata[,c("GD", "GNPQ", "FSDJ")] Y <- ts(dat$GD,start = 1959, frequency = 4) mxreg <- ts(dat[,c("GNPQ","FSDJ")],start = 1959, frequency = 4) m1 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE) m2 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1) m3 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE) m4 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1, t.pval = 0.01) distorttest(m1, coef = "all") distorttest(m2, coef = "all") distorttest(m3, coef = "GNPQ") distorttest(m4, coef = c("ar1", "FSDJ")) ## End(Not run)
## Not run: data(Nile) nile <- isat(Nile, sis=FALSE, iis=TRUE, plot=TRUE, t.pval=0.01) distorttest(nile) data("hpdata") # Another example with co-variates dat <- hpdata[,c("GD", "GNPQ", "FSDJ")] Y <- ts(dat$GD,start = 1959, frequency = 4) mxreg <- ts(dat[,c("GNPQ","FSDJ")],start = 1959, frequency = 4) m1 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE) m2 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1) m3 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE) m4 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1, t.pval = 0.01) distorttest(m1, coef = "all") distorttest(m2, coef = "all") distorttest(m3, coef = "GNPQ") distorttest(m4, coef = c("ar1", "FSDJ")) ## End(Not run)
Implements the Jiao-Pretis-Schwarz bootstrap test for coefficient distortion due to outliers by comparing coefficient estimates obtained using OLS to estimates obtained using the robust IIS estimator implemented using isat
. Three bootstrap schemes are available - using the original sample (not recommended), the clean (outlier-removed) data, and using the clean (outlier-removed) sample with scaled cut-offs used to detect outliers in IIS implemented using isat. See the referenced Jiao-Pretis-Schwarz Paper below for more information.
distorttestboot(x, nboot, clean.sample = TRUE, parametric = FALSE, scale.t.pval = 1, parallel.options = NULL, quantiles = c(0.90, 0.95, 0.99), ...) ##S3 printing method for objects of class 'distorttestboot': ## S3 method for class 'distorttestboot' print(x, print.proportion = FALSE, ...)
distorttestboot(x, nboot, clean.sample = TRUE, parametric = FALSE, scale.t.pval = 1, parallel.options = NULL, quantiles = c(0.90, 0.95, 0.99), ...) ##S3 printing method for objects of class 'distorttestboot': ## S3 method for class 'distorttestboot' print(x, print.proportion = FALSE, ...)
x |
object of class |
nboot |
numeric. Number of bootstrap replications. A high number of replications are recommended for final estimation (more than 200 at least). |
clean.sample |
logical. Whether the outlier-removed sample should be used in resampling. |
parametric |
logical. Whether to use a parametric bootstrap. Default is non-parametric (FALSE). Parametric currently not implemented for autoregressive models. |
scale.t.pval |
numeric. Scaled target p-value (for selection) relative to the initial p-value used in isat. Default is 1. E.g. a value of 0.5 would scale an initial target p-value of 0.05 to 0.025. |
parallel.options |
NULL (Default) or an integer, i.e. the number of cores/threads to be used for parallel computing (implemented w/makeCluster and parLapply). |
print.proportion |
logical. Should the bootstraped Jiao-Pretis Outlier Proportion Test be printed. Default is FALSE. |
quantiles |
numeric vector. Quantiles to be shown based on the bootstrapped results. Default is c(0.90, 0.95, 0.99). |
... |
Further arguments passed to |
A list including an object of class h-test
.
Xiyu Jiao https://sites.google.com/view/xiyujiao
Felix Pretis https://felixpretis.climateeconometrics.org/
Moritz Schwarz https://moritzschwarz.org
Xiyu Jiao, Felix Pretis,and Moritz Schwarz. Testing for Coefficient Distortion due to Outliers with an Application to the Economic Impacts of Climate Change. Available at SSRN: https://www.ssrn.com/abstract=3915040 or doi:10.2139/ssrn.3915040
## Not run: data(Nile) nile <- isat(Nile, sis=FALSE, iis=TRUE, plot=TRUE, t.pval=0.01) distorttest(nile) # bootstrap (with nboot = 5 to save time. Higher replications are recommended) distorttestboot(nile, nboot = 5) data("hpdata") # Another example with co-variates dat <- hpdata[,c("GD", "GNPQ", "FSDJ")] Y <- ts(dat$GD,start = 1959, frequency = 4) mxreg <- ts(dat[,c("GNPQ","FSDJ")],start = 1959, frequency = 4) m1 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE) m2 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1) m3 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE) m4 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1, t.pval = 0.01) distorttest(m1, coef = "all") distorttest(m2, coef = "all") distorttest(m3, coef = "GNPQ") distorttest(m4, coef = c("ar1", "FSDJ")) # bootstrap (with nboot = 5 to save time. Higher replications are recommended) distorttestboot(m1, nboot = 5) distorttestboot(m2, nboot = 5) distorttestboot(m3, nboot = 5) distorttestboot(m4, nboot = 5) distorttestboot(m4, nboot = 5, parametric = TRUE, scale.t.pval = 0.5) ## End(Not run)
## Not run: data(Nile) nile <- isat(Nile, sis=FALSE, iis=TRUE, plot=TRUE, t.pval=0.01) distorttest(nile) # bootstrap (with nboot = 5 to save time. Higher replications are recommended) distorttestboot(nile, nboot = 5) data("hpdata") # Another example with co-variates dat <- hpdata[,c("GD", "GNPQ", "FSDJ")] Y <- ts(dat$GD,start = 1959, frequency = 4) mxreg <- ts(dat[,c("GNPQ","FSDJ")],start = 1959, frequency = 4) m1 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE) m2 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1) m3 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE) m4 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1, t.pval = 0.01) distorttest(m1, coef = "all") distorttest(m2, coef = "all") distorttest(m3, coef = "GNPQ") distorttest(m4, coef = c("ar1", "FSDJ")) # bootstrap (with nboot = 5 to save time. Higher replications are recommended) distorttestboot(m1, nboot = 5) distorttestboot(m2, nboot = 5) distorttestboot(m3, nboot = 5) distorttestboot(m4, nboot = 5) distorttestboot(m4, nboot = 5, parametric = TRUE, scale.t.pval = 0.5) ## End(Not run)
Drops columns in a matrix to avoid perfect multicollinearity.
dropvar(x, tol=1e-07, LAPACK=FALSE, silent=FALSE)
dropvar(x, tol=1e-07, LAPACK=FALSE, silent=FALSE)
x |
a matrix, possibly less than full column rank. |
tol |
numeric value. The tolerance for detecting linear dependencies among regressors, see |
LAPACK |
logical, TRUE or FALSE (default). If true use LAPACK otherwise use LINPACK, see |
silent |
logical, TRUE (default) or FALSE. Whether to print a notification whenever a regressor is removed |
Original function drop.coef
developed by Rune Haubo B. Christensen in package ordinal
, https://cran.r-project.org/package=ordinal.
a matrix whose regressors linearly independent
Rune Haubo B. Christensen, with modifications by Genaro Sucarrat, http://www.sucarrat.net/
Rune H.B. Christensen (2014): 'ordinal: Regression Models for Ordinal Data'. https://cran.r-project.org/package=ordinal
set.seed(1) x <- matrix(rnorm(20), 5) dropvar(x) #full rank, none are dropped x[,4] <- x[,1]*2 dropvar(x) #less than full rank, last column dropped
set.seed(1) x <- matrix(rnorm(20), 5) dropvar(x) #full rank, none are dropped x[,4] <- x[,1]*2 dropvar(x) #less than full rank, last column dropped
The function eqwma
returns an Equally Weighted Moving Average (EqWMA) of the pth. exponentiated values lagged k
times (the default of k
is 1). Optionally, the absolute values are computed before averaging if abs=TRUE
, and the natural log of the values is returned if log=TRUE
. The function leqwma
is a wrapper to eqwma
with abs=TRUE
and log=TRUE
.
If x is financial return (possibly mean-corrected) and p=2, then this gives the socalled 'historical' model, also known as an integrated ARCH model where the ARCH coefficients all have the same value with sum equal to one. In the log-variance specification the lag of log(EqWMA) is thus a financial volatility proxy. It may be an imperfect proxy compared with high-frequency data (which can also be included as regressors), but - in contrast to high-frequency data - is always available and easy to compute.
eqwma(x, length=5, k=1, p=1, abs=FALSE, log=FALSE, as.vector=FALSE, lag=NULL, start=NULL) leqwma(x, length=5, k=1, p=2, as.vector=FALSE, lag=NULL, start=NULL)
eqwma(x, length=5, k=1, p=1, abs=FALSE, log=FALSE, as.vector=FALSE, lag=NULL, start=NULL) leqwma(x, length=5, k=1, p=2, as.vector=FALSE, lag=NULL, start=NULL)
x |
numeric vector, time-series or |
length |
integer or vector of integers each equal to or greater than 1. The length or lengths of the moving window or windows of averages |
k |
integer that determines how many periods the term(s) should be lagged. If 0 (or smaller), then the moving averages are not lagged |
p |
numeric value. The exponent p in x^p when |
log |
logical with default |
abs |
logical with default |
as.vector |
logical with default |
lag |
deprecated |
start |
deprecated |
The intended primary use of eqwma
is to construct mixed frequency regressors for the mean specification of an arx
model.
The intended primary use of leqwma
is to construct volatility proxies for the log-variance specification in an arx
model. In the latter case, the default is the lagged log of an equally weighted moving average of the squared residuals, where each average is made up of m observations. This is equivalent to an integrated ARCH(p) model where the p coefficients are all equal. For further details on the use of log(EqWMA) as a volatility proxy, see Sucarrat and Escribano (2012).
numeric matrix, vector or zoo
object
Genaro Sucarrat, https://www.sucarrat.net/
Genaro Sucarrat and Alvaro Escribano (2012): 'Automated Financial Model Selection: General-to-Specific Modelling of the Mean and Volatility Specifications', Oxford Bulletin of Economics and Statistics 74, Issue no. 5 (October), pp. 716-735
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44
##generate an iid normal series: set.seed(123) x <- rnorm(100) ##compute lag of EqWMA(20) for x^2: eqwma(x, p=2) ##compute lag of EqWMA(5) and lag of EqWMA(10) for x: eqwma(x, length=c(5,10)) ##compute lag of log(EqWMA(20)) for x^2: leqwma(x) #compute lag of log(EqWMA(5)) and lag of log(EqWMA(8)) #for abs(x)^2: leqwma(x, length=c(4,8))
##generate an iid normal series: set.seed(123) x <- rnorm(100) ##compute lag of EqWMA(20) for x^2: eqwma(x, p=2) ##compute lag of EqWMA(5) and lag of EqWMA(10) for x: eqwma(x, length=c(5,10)) ##compute lag of log(EqWMA(20)) for x^2: leqwma(x) #compute lag of log(EqWMA(5)) and lag of log(EqWMA(8)) #for abs(x)^2: leqwma(x, length=c(4,8))
Extract the in-sample conditional Value-at-Risk, or the in-sample conditional Expected Shortfall for the chosen risk level(s).
ES(object, level=0.99, type=7, ...) VaR(object, level=0.99, type=7, ...)
ES(object, level=0.99, type=7, ...) VaR(object, level=0.99, type=7, ...)
object |
an |
level |
the risk level(s), must be between 0 and 1 |
type |
the method used to compute the empirical quantiles of the standardised residuals |
... |
arguments passed on (currently not used) |
A vector or matrix containing either the conditional Value-at-Risk (VaR) or the conditional Expected Shortfall (ES) for the chosen risk level(s).
Genaro Sucarrat, http://www.sucarrat.net/
##generate random variates, estimate model: y <- rnorm(50) mymodel <- arx(y, arch=1) ##extract 99% expected shortfall: ES(mymodel) ##extract 99%, 95% and 90% expected shortfalls: ES(mymodel, level=c(0.99, 0.95, 0.9)) ##extract 99% value-at-risk: VaR(mymodel) ##extract 99%, 95% and 90% values-at-risk: VaR(mymodel, level=c(0.99, 0.95, 0.9))
##generate random variates, estimate model: y <- rnorm(50) mymodel <- arx(y, arch=1) ##extract 99% expected shortfall: ES(mymodel) ##extract 99%, 95% and 90% expected shortfalls: ES(mymodel, level=c(0.99, 0.95, 0.9)) ##extract 99% value-at-risk: VaR(mymodel) ##extract 99%, 95% and 90% values-at-risk: VaR(mymodel, level=c(0.99, 0.95, 0.9))
Functions that facilitate the export of results to the commercial econometric softwares EViews and STATA, respectively.
eviews(object, file=NULL, print=TRUE, return=FALSE) stata(object, file=NULL, print=TRUE, return=FALSE)
eviews(object, file=NULL, print=TRUE, return=FALSE) stata(object, file=NULL, print=TRUE, return=FALSE)
object |
an |
file |
filename, i.e. the destination of the exported data |
print |
logical. If TRUE, then the estimation code in EViews (or STATA) is printed |
return |
logical. If TRUE, then a list is returned |
Either printed text or a list
(if return=TRUE)
Genaro Sucarrat, http://www.sucarrat.net/
##simulate random variates, estimate model: y <- rnorm(30) mX <- matrix(rnorm(30*2), 30, 2) mymod <- arx(y, mc=TRUE, mxreg=mX) ##print EViews code: eviews(mymod) ##print Stata code: stata(mymod)
##simulate random variates, estimate model: y <- rnorm(30) mX <- matrix(rnorm(30*2), 30, 2) mymod <- arx(y, mc=TRUE, mxreg=mX) ##print EViews code: eviews(mymod) ##print Stata code: stata(mymod)
For an overview of the gets package, see gets-package
. Here, documentation of generic functions for GETS modelling is provided. Note that gets.arx
is a convenience wrapper to getsm
and getsv
. For specific GETS methods for lm
, logitx
and isat
models, see gets.lm
, gets.logitx
and gets.isat
, respectively.
gets(x, ...) ## S3 method for class 'arx' gets(x, spec=NULL, ...)
gets(x, ...) ## S3 method for class 'arx' gets(x, spec=NULL, ...)
x |
an object to be subjected to GETS modelling |
spec |
|
... |
further arguments passed to or from other methods |
gets.arx
is a convenience wrapper to getsm
and getsv
.
Genaro Sucarrat, http://www.sucarrat.net/
getsm
, getsv
, getsFun
, blocksFun
General-to-Specific (GETS) Modelling of a objects of class isat
.
## S3 method for class 'isat' gets(x, t.pval=0.05, wald.pval=t.pval, vcov.type=NULL, do.pet=TRUE, ar.LjungB=list(lag=NULL, pval=0.025), arch.LjungB=list(lag=NULL, pval=0.025), normality.JarqueB=NULL, user.diagnostics=NULL, info.method=c("sc","aic","aicc","hq"), gof.function=NULL, gof.method=NULL, keep=NULL, include.gum=FALSE, include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e-07, turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE,...)
## S3 method for class 'isat' gets(x, t.pval=0.05, wald.pval=t.pval, vcov.type=NULL, do.pet=TRUE, ar.LjungB=list(lag=NULL, pval=0.025), arch.LjungB=list(lag=NULL, pval=0.025), normality.JarqueB=NULL, user.diagnostics=NULL, info.method=c("sc","aic","aicc","hq"), gof.function=NULL, gof.method=NULL, keep=NULL, include.gum=FALSE, include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e-07, turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE,...)
x |
an object of class 'isat' |
t.pval |
numeric value between 0 and 1. The significance level used for the two-sided regressor significance t-tests |
wald.pval |
numeric value between 0 and 1. The significance level used for the Parsimonious Encompassing Tests (PETs). By default, it is the same as |
vcov.type |
the type of variance-covariance matrix used. If |
do.pet |
logical. If |
ar.LjungB |
a two-item list with names |
arch.LjungB |
a two-item list with names |
normality.JarqueB |
a value between 0 and 1, or |
user.diagnostics |
|
info.method |
character string, "sc" (default), "aic" or "hq", which determines the information criterion to be used when selecting among terminal models. The abbreviations are short for the Schwarz or Bayesian information criterion (sc), the Akaike information criterion (aic) and the Hannan-Quinn (hq) information criterion |
gof.function |
|
gof.method |
|
keep |
the regressors to be excluded from removal in the specification search. Note that |
include.gum |
logical. If |
include.1cut |
logical. If |
include.empty |
logical. If |
max.paths |
|
tol |
numeric value. The tolerance for detecting linear dependencies in the columns of the variance-covariance matrix when computing the Wald-statistic used in the Parsimonious Encompassing Tests (PETs), see the |
turbo |
logical. If |
print.searchinfo |
logical. If |
plot |
|
alarm |
logical. If |
... |
further arguments passed on to and from methods |
Internally, gets.isat
invokes getsm
for the GETS-modelling.
A list of class gets
.
Moritz Schwarz, https://www.inet.ox.ac.uk/people/moritz-schwarz
Genaro Sucarrat, https://www.sucarrat.net/
isat
, getsm
, getsFun
, paths
and terminals
##generate some data: #set.seed(123) #for reproducibility #y <- rnorm(30) #generate Y #isatmod <- isat(y) #gets(isatmot)
##generate some data: #set.seed(123) #for reproducibility #y <- rnorm(30) #generate Y #isatmod <- isat(y) #gets(isatmot)
The starting model, an object of the 'larch' class (see larch
, is referred to as the General Unrestricted Model (GUM). The gets.larch()
function undertakes multi-path GETS modelling of the log-variance specification. The diagnostic tests are undertaken on the standardised residuals, and the keep
option enables regressors to be excluded from possible removal.
## S3 method for class 'larch' gets(x, t.pval=0.05, wald.pval=t.pval, do.pet=TRUE, ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL, user.diagnostics=NULL, info.method=c("sc", "aic", "aicc", "hq"), gof.function=NULL, gof.method=NULL, keep=c(1), include.gum=FALSE, include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e-07, turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE, ...)
## S3 method for class 'larch' gets(x, t.pval=0.05, wald.pval=t.pval, do.pet=TRUE, ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL, user.diagnostics=NULL, info.method=c("sc", "aic", "aicc", "hq"), gof.function=NULL, gof.method=NULL, keep=c(1), include.gum=FALSE, include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e-07, turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE, ...)
x |
an object of class 'larch' |
t.pval |
numeric value between 0 and 1. The significance level used for the two-sided regressor significance t-tests |
wald.pval |
numeric value between 0 and 1. The significance level used for the Parsimonious Encompassing Tests (PETs). By default, |
do.pet |
logical. If |
ar.LjungB |
|
arch.LjungB |
|
normality.JarqueB |
|
user.diagnostics |
|
info.method |
character string, "sc" (default), "aic", "aicc" or "hq", which determines the information criterion to be used when selecting among terminal models. See |
gof.function |
|
gof.method |
|
keep |
the regressors to be kept (i.e. excluded from removal) in the specification search. Currently, |
include.gum |
logical. If |
include.1cut |
logical. If |
include.empty |
logical. If |
max.paths |
|
tol |
numeric value. The tolerance for detecting linear dependencies in the columns of the variance-covariance matrix when computing the Wald-statistic used in the Parsimonious Encompassing Tests (PETs), see the |
turbo |
logical. If |
print.searchinfo |
logical. If |
plot |
|
alarm |
logical. If |
... |
additional arguments |
See Pretis, Reade and Sucarrat (2018): doi:10.18637/jss.v086.i03, and Sucarrat (2020): https://journal.r-project.org/archive/2021/RJ-2021-024/.
The arguments user.diagnostics
and gof.function
enable the specification of user-defined diagnostics and a user-defined goodness-of-fit function. For the former, see the documentation of diagnostics
. For the latter, the principles of the same arguments in getsFun
are followed, see its documentation under "Details", and Sucarrat (2020): https://journal.r-project.org/archive/2021/RJ-2021-024/.
A list of class 'larch', see larch
, with additional information about the GETS modelling
Genaro Sucarrat, http://www.sucarrat.net/
C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259. doi:10.1016/0165-1765(80)90024-5
G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270
Felix Pretis, James Reade and Genaro Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. doi:10.18637/jss.v086.i03
Genaro Sucarrat (2020): 'User-Specified General-to-Specific and Indicator Saturation Methods'. The R Journal 12:2, pages 388-401. https://journal.r-project.org/archive/2021/RJ-2021-024/
Methods and extraction functions (mostly S3 methods): coef.larch
, ES
, fitted.larch
, gets.larch
, logLik.larch
, nobs.larch
, plot.larch
, predict.larch
, print.larch
, residuals.larch
, summary.larch
, VaR
, toLatex.larch
and vcov.arx
Related functions: eqwma
, leqwma
, regressorsVariance
, zoo
, getsFun
, qr.solve
##Simulate some data: set.seed(123) e <- rnorm(40) x <- matrix(rnorm(4*40), 40, 4) ##estimate a log-ARCH(3) with asymmetry and log(x^2) as regressors: gum <- larch(e, arch=1:3, asym=1, vxreg=log(x^2)) ##GETS modelling of the log-variance: simple <- gets(gum) ##GETS modelling with intercept and log-ARCH(1) terms ##excluded from removal: simple <- gets(gum, keep=c(1,2)) ##GETS modelling with non-default autocorrelation ##diagnostics settings: simple <- gets(gum, ar.LjungB=list(pval=0.05)) ##GETS modelling with very liberal (40%) significance level: simple <- gets(gum, t.pval=0.4)
##Simulate some data: set.seed(123) e <- rnorm(40) x <- matrix(rnorm(4*40), 40, 4) ##estimate a log-ARCH(3) with asymmetry and log(x^2) as regressors: gum <- larch(e, arch=1:3, asym=1, vxreg=log(x^2)) ##GETS modelling of the log-variance: simple <- gets(gum) ##GETS modelling with intercept and log-ARCH(1) terms ##excluded from removal: simple <- gets(gum, keep=c(1,2)) ##GETS modelling with non-default autocorrelation ##diagnostics settings: simple <- gets(gum, ar.LjungB=list(pval=0.05)) ##GETS modelling with very liberal (40%) significance level: simple <- gets(gum, t.pval=0.4)
General-to-Specific (GETS) Modelling of objects of class lm
.
## S3 method for class 'lm' gets(x, keep = NULL, include.1cut = TRUE, print.searchinfo = TRUE, ...)
## S3 method for class 'lm' gets(x, keep = NULL, include.1cut = TRUE, print.searchinfo = TRUE, ...)
x |
an object of class 'lm', see |
keep |
|
include.1cut |
|
print.searchinfo |
|
... |
further arguments passed on to |
Internally, gets.lm
invokes getsFun
for the GETS-modelling, which is also invoked by getsm
. See their help pages for more information.
A list of class lm
. Note that the 'top' of the list contains information (paths and terminal models) from the GETS modelling, see paths
and terminals
Genaro Sucarrat, http://www.sucarrat.net/
lm
, getsFun
, getsm
, paths
and terminals
##generate some data: set.seed(123) #for reproducibility y <- rnorm(30) #generate Y x <- matrix(rnorm(30*10), 30, 10) #matrix of Xs colnames(x) <- paste0("var", 1:NCOL(x)) ##estimate model: mymod <- lm(y ~ x) ##do gets modelling: gets(mymod) ##ensure intercept is not removed: gets(mymod, keep=1)
##generate some data: set.seed(123) #for reproducibility y <- rnorm(30) #generate Y x <- matrix(rnorm(30*10), 30, 10) #matrix of Xs colnames(x) <- paste0("var", 1:NCOL(x)) ##estimate model: mymod <- lm(y ~ x) ##do gets modelling: gets(mymod) ##ensure intercept is not removed: gets(mymod, keep=1)
General-to-Specific (GETS) Modelling of a dynamic Autoregressive (AR) logit model with covariates ('X') of class 'dlogitx'.
## S3 method for class 'logitx' gets(x, t.pval = 0.05, wald.pval = t.pval, do.pet = TRUE, user.diagnostics = NULL, keep = NULL, include.gum = FALSE, include.1cut = TRUE, include.empty = FALSE, max.paths = NULL, turbo = TRUE, print.searchinfo = TRUE, plot = NULL, alarm = FALSE, ...)
## S3 method for class 'logitx' gets(x, t.pval = 0.05, wald.pval = t.pval, do.pet = TRUE, user.diagnostics = NULL, keep = NULL, include.gum = FALSE, include.1cut = TRUE, include.empty = FALSE, max.paths = NULL, turbo = TRUE, print.searchinfo = TRUE, plot = NULL, alarm = FALSE, ...)
x |
an object of class 'logitx', see |
t.pval |
numeric value between 0 and 1. The significance level used for the two-sided regressor significance t-tests |
wald.pval |
numeric value between 0 and 1. The significance level used for the Parsimonious Encompassing Tests (PETs). By default, it is the same as |
do.pet |
|
user.diagnostics |
|
keep |
|
include.gum |
|
include.1cut |
|
include.empty |
|
max.paths |
|
turbo |
|
print.searchinfo |
|
plot |
|
alarm |
|
... |
further arguments passed to or from other methods |
The model of class 'logitx' is a dynamic Autoregressive (AR) logit model with (optional) covariates ('X') proposed by Kauppi and Saikkonen (2008). Internally, gets.logitx
undertakes the General-to-Specific (GETS) modelling with the getsFun
function, see Sucarrat (2020).
Genaro Sucarrat, http://www.sucarrat.net/
Heikki Kauppi and Penti Saikkonen (2008): 'Predicting U.S. Recessions with Dynamic Binary Response Models'. The Review of Economic Statistics 90, pp. 777-791
logitx
, logitxSim
, coef.logitx
, getsFun
##simulate from ar(1), create covariates: set.seed(123) #for reproducibility y <- logitxSim(100, ar=0.3) x <- matrix(rnorm(5*100), 100, 5) ##estimate model: mymod <- logitx(y, ar=1:4, xreg=x) ##do gets modelling: gets(mymod)
##simulate from ar(1), create covariates: set.seed(123) #for reproducibility y <- logitxSim(100, ar=0.3) x <- matrix(rnorm(5*100), 100, 5) ##estimate model: mymod <- logitx(y, ar=1:4, xreg=x) ##do gets modelling: gets(mymod)
Auxiliary function (i.e. not intended for the average user) that enables fast and efficient GETS-modelling with user-specified estimators and models, and user-specified diagnostics and goodness-of-fit criteria. The function is called by and relied upon by getsm
, getsv
, isat
and blocksFun
.
getsFun(y, x, untransformed.residuals=NULL, user.estimator=list(name="ols"), gum.result=NULL, t.pval=0.05, wald.pval=t.pval, do.pet=TRUE, ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL, user.diagnostics=NULL, gof.function=list(name="infocrit"), gof.method=c("min", "max"), keep=NULL, include.gum=FALSE, include.1cut=FALSE, include.empty=FALSE, max.paths=NULL, turbo=FALSE, tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, alarm=FALSE)
getsFun(y, x, untransformed.residuals=NULL, user.estimator=list(name="ols"), gum.result=NULL, t.pval=0.05, wald.pval=t.pval, do.pet=TRUE, ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL, user.diagnostics=NULL, gof.function=list(name="infocrit"), gof.method=c("min", "max"), keep=NULL, include.gum=FALSE, include.1cut=FALSE, include.empty=FALSE, max.paths=NULL, turbo=FALSE, tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, alarm=FALSE)
y |
a numeric vector (with no missing values, i.e. no non-numeric 'holes') |
x |
a |
untransformed.residuals |
|
user.estimator |
a |
gum.result |
a |
t.pval |
|
wald.pval |
|
do.pet |
|
ar.LjungB |
a two element |
arch.LjungB |
a two element |
normality.JarqueB |
|
user.diagnostics |
|
gof.function |
a |
gof.method |
a |
keep |
|
include.gum |
|
include.1cut |
|
include.empty |
|
max.paths |
|
turbo |
|
tol |
numeric value ( |
LAPACK |
currently not used |
max.regs |
|
print.searchinfo |
|
alarm |
|
The value returned by the estimator specified in user.estimator
should be a list
containing at least six items: "coefficients", "df", "vcov", "logl", "n" and "k". The item "coefficients" should be a vector of length NCOL(x)
containing the estimated coefficients. The item named "df" is used to compute the p-values associated with the t-statistics, i.e. coef/std.err. The item named "vcov" contains the (symmetric) coefficient-covariance matrix of the estimated coefficients. The items "logl" (the log-likelihood), "n" (the number of observations) and "k" (the number of estimated parameters; not necessarily equal to the number of coefficients) are used to compute the information criterion. Finally, the estimator MUST be able to handle empty regressor-matrices (i.e. is.null(x)=TRUE
or NCOL(x)=0
). In this case, then the first three items (i.e. "coefficients", "df" and "vcov") can - and should - be NULL
.
The argument user.estimator
enables the user to specify an estimator that differs from the default (ols
). To do this, the argument should be a list with at least one entry, name (of class character), that contains the name of the user-defined function. The call to this function is executed with do.call
, whose default value on envir
is parent.frame()
. Usually, this will be the global environment (.GlobalEnv
), but it can be changed by adding an entry named envir
to the list that indicates where the user-defined function resides.
The argument user.diagnostics
enables the user to specify additional - or alternative - diagnostics, see diagnostics
.
The argument gof.function
enables the user to specify a goodness-of-fit function that differs from the default (infocrit
). The principles to follow are the same as that of user.estimator
: The argument should be a list
with at least one entry, name, that contains the name of the user-defined function, additional entries in the list are passed on to the user-specified goodness-of-fit function, and optionally an entry named envir
may indicate where the user-defined function resides.
A list
with the results of the specification search.
Genaro Sucarrat, http://www.sucarrat.net/
C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259
G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270
F. Pretis, J. Reade and G. Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44
G. sucarrat (2019): 'User-Specified General-to-Specific and Indicator Saturation Methods', Munich Personal RePEc Archive: https://mpra.ub.uni-muenchen.de/96653/
ols
, diagnostics
, infocrit
, getsv
##aim: do gets on the x-part (i.e. the covariates) of an arma-x model. ##create the user-defined estimator (essentially adding, renaming ##and re-organising the items returned by the estimator): myEstimator <- function(y, x) { tmp <- arima(y, order=c(1,0,1), xreg=x) #rename and re-organise: result <- list() result$coefficients <- tmp$coef[-c(1:3)] result$vcov <- tmp$var.coef result$vcov <- result$vcov[-c(1:3),-c(1:3)] result$logl <- tmp$loglik result$n <- tmp$nobs result$k <- NCOL(x) result$df <- result$n - result$k return(result) } ##generate some data: ##a series w/structural break and eleven step-dummies near the break set.seed(123) eps <- arima.sim(list(ar=0.4, ma=0.1), 60) x <- coredata(sim(eps, which.ones=25:35)) #eleven step-dummies y <- 4*x[,"sis30"] + eps #create shift upwards at observation 30 plot(y) ##estimate the gum and then do gets in a single step: ##getsFun(y, x, user.estimator=list(name="myEstimator")) ##estimate the gum and then do gets in two steps: #mygum <- myEstimator(y, x) ##getsFun(y, x, user.estimator=list(name="myEstimator"), gum.result=mygum)
##aim: do gets on the x-part (i.e. the covariates) of an arma-x model. ##create the user-defined estimator (essentially adding, renaming ##and re-organising the items returned by the estimator): myEstimator <- function(y, x) { tmp <- arima(y, order=c(1,0,1), xreg=x) #rename and re-organise: result <- list() result$coefficients <- tmp$coef[-c(1:3)] result$vcov <- tmp$var.coef result$vcov <- result$vcov[-c(1:3),-c(1:3)] result$logl <- tmp$loglik result$n <- tmp$nobs result$k <- NCOL(x) result$df <- result$n - result$k return(result) } ##generate some data: ##a series w/structural break and eleven step-dummies near the break set.seed(123) eps <- arima.sim(list(ar=0.4, ma=0.1), 60) x <- coredata(sim(eps, which.ones=25:35)) #eleven step-dummies y <- 4*x[,"sis30"] + eps #create shift upwards at observation 30 plot(y) ##estimate the gum and then do gets in a single step: ##getsFun(y, x, user.estimator=list(name="myEstimator")) ##estimate the gum and then do gets in two steps: #mygum <- myEstimator(y, x) ##getsFun(y, x, user.estimator=list(name="myEstimator"), gum.result=mygum)
The starting model, an object of the 'arx' class, is referred to as the General Unrestricted Model (GUM). The getsm
function undertakes multi-path GETS modelling of the mean specification, whereas getsv
does the same for the log-variance specification. The diagnostic tests are undertaken on the standardised residuals, and the keep
option enables regressors to be excluded from possible removal.
##GETS-modelling of mean specification: getsm(object, t.pval=0.05, wald.pval=t.pval, vcov.type=NULL, do.pet=TRUE, ar.LjungB=list(lag=NULL, pval=0.025), arch.LjungB=list(lag=NULL, pval=0.025), normality.JarqueB=NULL, user.diagnostics=NULL, info.method=c("sc","aic","aicc", "hq"), gof.function=NULL, gof.method=NULL, keep=NULL, include.gum=FALSE, include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e-07, turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE) ##GETS modelling of log-variance specification: getsv(object, t.pval=0.05, wald.pval=t.pval, do.pet=TRUE, ar.LjungB=list(lag=NULL, pval=0.025), arch.LjungB=list(lag=NULL, pval=0.025), normality.JarqueB=NULL, user.diagnostics=NULL, info.method=c("sc","aic","aicc","hq"), gof.function=NULL, gof.method=NULL, keep=c(1), include.gum=FALSE, include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e-07, turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE)
##GETS-modelling of mean specification: getsm(object, t.pval=0.05, wald.pval=t.pval, vcov.type=NULL, do.pet=TRUE, ar.LjungB=list(lag=NULL, pval=0.025), arch.LjungB=list(lag=NULL, pval=0.025), normality.JarqueB=NULL, user.diagnostics=NULL, info.method=c("sc","aic","aicc", "hq"), gof.function=NULL, gof.method=NULL, keep=NULL, include.gum=FALSE, include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e-07, turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE) ##GETS modelling of log-variance specification: getsv(object, t.pval=0.05, wald.pval=t.pval, do.pet=TRUE, ar.LjungB=list(lag=NULL, pval=0.025), arch.LjungB=list(lag=NULL, pval=0.025), normality.JarqueB=NULL, user.diagnostics=NULL, info.method=c("sc","aic","aicc","hq"), gof.function=NULL, gof.method=NULL, keep=c(1), include.gum=FALSE, include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e-07, turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE)
object |
an object of class 'arx' |
t.pval |
numeric value between 0 and 1. The significance level used for the two-sided regressor significance t-tests |
wald.pval |
numeric value between 0 and 1. The significance level used for the Parsimonious Encompassing Tests (PETs). By default, it is the same as |
vcov.type |
the type of variance-covariance matrix used. If |
do.pet |
logical. If |
ar.LjungB |
a |
arch.LjungB |
a |
normality.JarqueB |
a value between 0 and 1, or |
user.diagnostics |
|
info.method |
character string, "sc" (default), "aic" or "hq", which determines the information criterion to be used when selecting among terminal models. The abbreviations are short for the Schwarz or Bayesian information criterion (sc), the Akaike information criterion (aic) and the Hannan-Quinn (hq) information criterion |
gof.function |
|
gof.method |
|
keep |
the regressors to be excluded from removal in the specification search. Note that |
include.gum |
logical. If |
include.1cut |
logical. If |
include.empty |
logical. If |
max.paths |
|
tol |
numeric value. The tolerance for detecting linear dependencies in the columns of the variance-covariance matrix when computing the Wald-statistic used in the Parsimonious Encompassing Tests (PETs), see the |
turbo |
logical. If |
print.searchinfo |
logical. If |
plot |
|
alarm |
logical. If |
For an overview, see Pretis, Reade and Sucarrat (2018): doi:10.18637/jss.v086.i03.
The arguments user.diagnostics
and gof.function
enable the specification of user-defined diagnostics and a user-defined goodness-of-fit function. For the former, see the documentation of diagnostics
. For the latter, the principles of the same arguments in getsFun
are followed, see its documentation under "Details", and Sucarrat (2020): https://journal.r-project.org/archive/2021/RJ-2021-024/.
A list of class 'gets'
Genaro Sucarrat, http://www.sucarrat.net/
C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259. doi:10.1016/0165-1765(80)90024-5
G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270
Felix Pretis, James Reade and Genaro Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. doi:10.18637/jss.v086.i03
Genaro Sucarrat (2020): 'User-Specified General-to-Specific and Indicator Saturation Methods'. The R Journal 12:2, pages 388-401. https://journal.r-project.org/archive/2021/RJ-2021-024/
Extraction functions: coef.gets
, fitted.gets
, paths
, plot.gets
, print.gets
,residuals.gets
, summary.gets
, terminals
, vcov.gets
Related functions: arx
, eqwma
, leqwma
, zoo
, getsFun
, qr.solve
##Simulate from an AR(1): set.seed(123) y <- arima.sim(list(ar=0.4), 80) ##Simulate four independent Gaussian regressors: xregs <- matrix(rnorm(2*80), 80, 2) ##estimate an AR(2) with intercept and four conditioning ##regressors in the mean, and a log-ARCH(3) with log(xregs^2) as ##regressors in the log-variance: gum01 <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs, arch=1:3, vxreg=log(xregs^2)) ##GETS model selection of the mean: meanmod01 <- getsm(gum01) ##GETS model selection of the log-variance: varmod01 <- getsv(gum01) ##GETS model selection of the mean with the mean intercept ##excluded from removal: meanmod02 <- getsm(gum01, keep=1) ##GETS model selection of the mean with non-default #serial-correlation diagnostics settings: meanmod03 <- getsm(gum01, ar.LjungB=list(pval=0.05)) ##GETS model selection of the mean with very liberal ##(20 percent) significance levels: meanmod04 <- getsm(gum01, t.pval=0.2) ##GETS model selection of log-variance with all the ##log-ARCH terms excluded from removal: varmod03 <- getsv(gum01, keep=2:4)
##Simulate from an AR(1): set.seed(123) y <- arima.sim(list(ar=0.4), 80) ##Simulate four independent Gaussian regressors: xregs <- matrix(rnorm(2*80), 80, 2) ##estimate an AR(2) with intercept and four conditioning ##regressors in the mean, and a log-ARCH(3) with log(xregs^2) as ##regressors in the log-variance: gum01 <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs, arch=1:3, vxreg=log(xregs^2)) ##GETS model selection of the mean: meanmod01 <- getsm(gum01) ##GETS model selection of the log-variance: varmod01 <- getsv(gum01) ##GETS model selection of the mean with the mean intercept ##excluded from removal: meanmod02 <- getsm(gum01, keep=1) ##GETS model selection of the mean with non-default #serial-correlation diagnostics settings: meanmod03 <- getsm(gum01, ar.LjungB=list(pval=0.05)) ##GETS model selection of the mean with very liberal ##(20 percent) significance levels: meanmod04 <- getsm(gum01, t.pval=0.2) ##GETS model selection of log-variance with all the ##log-ARCH terms excluded from removal: varmod03 <- getsv(gum01, keep=2:4)
Generalised Method of Moment (GMM) estimation of linear models with either ordinary (homoscedastic error) or robust (heteroscedastic error) coefficient-covariance, see Hayashi (2000) chapter 3.
gmm(y, x, z, tol = .Machine$double.eps, weighting.matrix = c("efficient", "2sls", "identity"), vcov.type = c("ordinary", "robust"))
gmm(y, x, z, tol = .Machine$double.eps, weighting.matrix = c("efficient", "2sls", "identity"), vcov.type = c("ordinary", "robust"))
y |
numeric vector, the regressand |
x |
numeric matrix, the regressors |
z |
numeric matrix, the instruments |
tol |
numeric value. The tolerance for detecting linear dependencies in the columns of the matrices that are inverted, see the |
weighting.matrix |
a character that determines the weighting matrix to bee used, see "details" |
vcov.type |
a character that determines the expression for the coefficient-covariance, see "details" |
weighting.matrix = "identity"
corresponds to the Instrumental Variables (IV) estimator, weighting.matrix = "2sls"
corresponds to the 2 Stage Least Squares (2SLS) estimator, whereas weighting.matrix = "efficient"
corresponds to the efficient GMM estimator, see chapter 3 in Hayashi(2000).
vcov.type = "ordinary"
returns the ordinary expression for the coefficient-covariance, which is valid under conditionally homoscedastic errors. vcov.type = "robust"
returns an expression that is also valid under conditional heteroscedasticity, see chapter 3 in Hayashi (2000).
A list with, amongst other, the following items:
n |
number of observations |
k |
number of regressors |
df |
degrees of freedom, i.e. n-k |
coefficients |
a vector with the coefficient estimates |
fit |
a vector with the fitted values |
residuals |
a vector with the residuals |
residuals2 |
a vector with the squared residuals |
rss |
the residual sum of squares |
sigma2 |
the regression variance |
vcov |
the coefficient-covariance matrix |
logl |
the normal log-likelihood |
Genaro Sucarrat, http://www.sucarrat.net/
F. Hayashi (2000): 'Econometrics'. Princeton: Princeton University Press
##generate data where regressor is correlated with error: set.seed(123) #for reproducibility n <- 100 z1 <- rnorm(n) #instrument eps <- rnorm(n) #ensures cor(z,eps)=0 x1 <- 0.5*z1 + 0.5*eps #ensures cor(x,eps) is strong y <- 0.4 + 0.8*x1 + eps #the dgp cor(x1, eps) #check correlatedness of regressor cor(z1, eps) #check uncorrelatedness of instrument x <- cbind(1,x1) #regressor matrix z <- cbind(1,z1) #matrix with instruments ##efficient gmm estimation: mymod <- gmm(y, x, z) mymod$coefficients ##ols (for comparison): mymod <- ols(y,x) mymod$coefficients
##generate data where regressor is correlated with error: set.seed(123) #for reproducibility n <- 100 z1 <- rnorm(n) #instrument eps <- rnorm(n) #ensures cor(z,eps)=0 x1 <- 0.5*z1 + 0.5*eps #ensures cor(x,eps) is strong y <- 0.4 + 0.8*x1 + eps #the dgp cor(x1, eps) #check correlatedness of regressor cor(z1, eps) #check uncorrelatedness of instrument x <- cbind(1,x1) #regressor matrix z <- cbind(1,z1) #matrix with instruments ##efficient gmm estimation: mymod <- gmm(y, x, z) mymod$coefficients ##ols (for comparison): mymod <- ols(y,x) mymod$coefficients
Data used by Hoover and Perez (1999) in their evaluation of General-to-Specific (GETS) modelling. A detailed description of the data is found in their Table 1 (page 172). The data are quarterly, comprise 20 variables (the first variable is the quarterly index) and runs from 1959:1 to 1995:1. This corresponds to 145 observations. The original source of the data is Citibank.
data(hpdata)
data(hpdata)
Date
a factor that contains the (quarterly) dates of the observations
DCOINC
index of four coincident indicators
GD
GNP price deflator
GGEQ
government purchases of goods and services
GGFEQ
federal purchases of goods and services
GGFR
federal government receipts
GNPQ
GNP
GYDQ
disposable personal income
GPIQ
gross private domestic investment
FMRRA
total member bank reserves
FMBASE
monetary base (feredal reserve bank of St. Louis)
FM1DQ
M1
FM2DQ
M2
FSDJ
Dow Jones stock price
FYAAAC
Moody's AAA corporate bond yield
LHC
labour force (16 years+, civilian)
LHUR
unemployment rate
MU
unfilled orders (manufacturing, all industries)
MO
new orders (manufacturing, all industries)
GCQ
personal consumption expenditure
The data have been used for comparison and illustration of GETS model selection in several studies of the GETS methodology, including Hendry and Krolzig (1999, 2005), Doornik (2009) and Sucarrat and Escribano (2012).
Retrieved 14 October 2014 from: https://www.csus.edu/indiv/p/perezs/data/data.htm
David F. Hendry and Hans-Martin Krolzig (1999): 'Improving on 'Data mining reconsidered' by K.D. Hoover and S.J Perez', Econometrics Journal, Vol. 2, pp. 202-219.
David F. Hendry and Hans-Martin Krolzig (2005): 'The properties of automatic Gets modelling', Economic Journal 115, C32-C61.
Jurgen Doornik (2009): 'Autometrics', in Jennifer L. Castle and Neil Shephard (eds), 'The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry', Oxford University Press, Oxford, pp. 88-121.
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44.
##load Hoover and Perez (1999) data: data(hpdata) ##make quarterly data-matrix of zoo type: newhpdata <- zooreg(hpdata[,-1], start=c(1959,1), frequency=4) ##plot data: plot(newhpdata) ##transform data to log-differences in percent: dloghpdata <- diff(log(newhpdata))*100 ##plot log-differenced data: plot(dloghpdata)
##load Hoover and Perez (1999) data: data(hpdata) ##make quarterly data-matrix of zoo type: newhpdata <- zooreg(hpdata[,-1], start=c(1959,1), frequency=4) ##plot data: plot(newhpdata) ##transform data to log-differences in percent: dloghpdata <- diff(log(newhpdata))*100 ##plot log-differenced data: plot(dloghpdata)
Auxiliary functions to make, respectively, matrices of impulse indicators (iim
), step indicators (sim
) and trend indicators (tim
)
##make matrix of impulse indicators: iim(x, which.ones = NULL) ##make matrix of step indicators: sim(x, which.ones = NULL) ##make matrix of trend indicators: tim(x, which.ones = NULL, log.trend = FALSE)
##make matrix of impulse indicators: iim(x, which.ones = NULL) ##make matrix of step indicators: sim(x, which.ones = NULL) ##make matrix of trend indicators: tim(x, which.ones = NULL, log.trend = FALSE)
x |
either an integer (the length of the series in question) or a series (a vector or matrix) from which to use the time-series index to make indicators of |
which.ones |
the locations of the impulses. If NULL (the default), then all impulses are returned |
log.trend |
logical. If TRUE, then the natural log is applied on the trends |
If x
is a series or vector of observations, then the index of x
will be used for the labelling of the impulses, and in the returned zoo
object.
Note: For sim
and tim
the first indicator is removed, since it is exactly colinear with the others.
A zoo
matrix containing the impulses
Genaro Sucarrat, http://www.sucarrat.net/
##generate series: y <- rnorm(40) ##make matrix of impulse indicators: mIIM <- iim(40) ##make matrix of step-indicators, but only every third: mSIM <- sim(y, which.ones=seq(1,40,3)) ##give quarterly time-series attributes to y-series: y <- zooreg(y, frequency=4, end=c(2015,4)) ##make matrix of trend-indicators with quarterly labels: mTIM <- tim(y)
##generate series: y <- rnorm(40) ##make matrix of impulse indicators: mIIM <- iim(40) ##make matrix of step-indicators, but only every third: mSIM <- sim(y, which.ones=seq(1,40,3)) ##give quarterly time-series attributes to y-series: y <- zooreg(y, frequency=4, end=c(2015,4)) ##make matrix of trend-indicators with quarterly labels: mTIM <- tim(y)
Quarterly Norwegian year-on-year CPI inflation from 1989(1) to 2015(4).
data("infldata")
data("infldata")
A data frame with 108 observations on the following 5 variables:
date
a factor containing the dates
infl
year-on-year inflation
q2dum
a dummy variable equal to 1 in quarter 2 and 0 otherwise
q3dum
a dummy variable equal to 1 in quarter 3 and 0 otherwise
q4dum
a dummy variable equal to 1 in quarter 4 and 0 otherwise
Statistics Norway (SSB): https://www.ssb.no/. The raw data comprise monthly CPI data obtained via https://www.ssb.no/statbank/table/08183.
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44
data(infldata) infldata <- zooreg(infldata[,-1], frequency=4, start=c(1989,1)) plot(infldata[,"infl"])
data(infldata) infldata <- zooreg(infldata[,-1], frequency=4, start=c(1989,1)) plot(infldata[,"infl"])
Given a log-likelihood, the number of observations and the number of estimated parameters, the average value of a chosen information criterion is computed. This facilitates comparison of models that are estimated with a different number of observations, e.g. due to different lags.
infocrit(x, method=c("sc","aic","aicc","hq")) info.criterion(logl, n=NULL, k=NULL, method=c("sc","aic","aicc","hq"))
infocrit(x, method=c("sc","aic","aicc","hq")) info.criterion(logl, n=NULL, k=NULL, method=c("sc","aic","aicc","hq"))
x |
a |
method |
character, either "sc" (default), "aic", "aicc" or "hq" |
logl |
numeric, the value of the log-likelihood |
n |
integer, number of observations |
k |
integer, number of parameters |
Contrary to AIC
and BIC
, info.criterion
computes the average criterion value (i.e. division by the number of observations). This facilitates comparison of models that are estimated with a different number of observations, e.g. due to different lags.
infocrit
: a numeric (i.e. the value of the chosen information criterion)
info.criterion
: a list with elements
method |
type of information criterion |
n |
number of observations |
k |
number of parameters |
value |
the value on the information criterion |
Genaro Sucarrat, http://www.sucarrat.net/
H. Akaike (1974): 'A new look at the statistical model identification'. IEEE Transactions on Automatic Control 19, pp. 716-723
E. Hannan and B. Quinn (1979): 'The determination of the order of an autoregression'. Journal of the Royal Statistical Society B 41, pp. 190-195
C.M. Hurvich and C.-L. Tsai (1989): 'Regression and Time Series Model Selection in Small Samples'. Biometrika 76, pp. 297-307
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44
G. Schwarz (1978): 'Estimating the dimension of a model'. The Annals of Statistics 6, pp. 461-464
The isat
function undertakes multi-path indicator saturation to detect outliers and mean-shifts using impulses (IIS), step-shifts (SIS), or trend-indicators (TIS). Indicators are partitioned into blocks and selected over at a chosen level of significance (t.pval
) using the getsm
function.
isat(y, ...) ##default S3 method: ## Default S3 method: isat(y, mc=TRUE, ar=NULL, ewma=NULL, mxreg=NULL, iis=FALSE, sis=TRUE, tis=FALSE, uis=FALSE, blocks=NULL, ratio.threshold=0.8, max.block.size=30, t.pval=0.001, wald.pval=t.pval, vcov.type= c("ordinary","white","newey-west"), do.pet=FALSE, ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL, info.method=c("sc","aic","hq"), user.diagnostics=NULL, user.estimator=NULL, gof.function=NULL, gof.method = c("min", "max"), include.gum=NULL, include.1cut=FALSE, include.empty=FALSE, max.paths=NULL, parallel.options=NULL, turbo=FALSE, tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, plot=NULL, alarm=FALSE, ...) ##S3 method for objects of class 'lm': ## S3 method for class 'lm' isat(y, ar=NULL, ewma=NULL, iis=FALSE, sis=TRUE, tis=FALSE, uis=FALSE, blocks=NULL, ratio.threshold=0.8, max.block.size=30, t.pval=0.001, wald.pval=t.pval, vcov.type= c("ordinary","white","newey-west"), do.pet=FALSE, ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL, info.method=c("sc","aic","hq"), user.diagnostics=NULL, user.estimator=NULL, gof.function=NULL, gof.method = c("min", "max"), include.gum=NULL, include.1cut=FALSE, include.empty=FALSE, max.paths=NULL, parallel.options=NULL, turbo=FALSE, tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, plot=NULL, alarm=FALSE, ...) ##S3 method for objects of class 'arx': ## S3 method for class 'arx' isat(y, mc=TRUE, ar=NULL, ewma=NULL, iis=FALSE, sis=TRUE, tis=FALSE, uis=FALSE, blocks=NULL, ratio.threshold=0.8, max.block.size=30, t.pval=0.001, wald.pval=t.pval, vcov.type= c("ordinary","white","newey-west"), do.pet=FALSE, ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL, info.method=c("sc","aic","hq"), user.diagnostics=NULL, user.estimator=NULL, gof.function=NULL, gof.method = c("min", "max"), include.gum=NULL, include.1cut=FALSE, include.empty=FALSE, max.paths=NULL, parallel.options=NULL, turbo=FALSE, tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, plot=NULL, alarm=FALSE, ...)
isat(y, ...) ##default S3 method: ## Default S3 method: isat(y, mc=TRUE, ar=NULL, ewma=NULL, mxreg=NULL, iis=FALSE, sis=TRUE, tis=FALSE, uis=FALSE, blocks=NULL, ratio.threshold=0.8, max.block.size=30, t.pval=0.001, wald.pval=t.pval, vcov.type= c("ordinary","white","newey-west"), do.pet=FALSE, ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL, info.method=c("sc","aic","hq"), user.diagnostics=NULL, user.estimator=NULL, gof.function=NULL, gof.method = c("min", "max"), include.gum=NULL, include.1cut=FALSE, include.empty=FALSE, max.paths=NULL, parallel.options=NULL, turbo=FALSE, tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, plot=NULL, alarm=FALSE, ...) ##S3 method for objects of class 'lm': ## S3 method for class 'lm' isat(y, ar=NULL, ewma=NULL, iis=FALSE, sis=TRUE, tis=FALSE, uis=FALSE, blocks=NULL, ratio.threshold=0.8, max.block.size=30, t.pval=0.001, wald.pval=t.pval, vcov.type= c("ordinary","white","newey-west"), do.pet=FALSE, ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL, info.method=c("sc","aic","hq"), user.diagnostics=NULL, user.estimator=NULL, gof.function=NULL, gof.method = c("min", "max"), include.gum=NULL, include.1cut=FALSE, include.empty=FALSE, max.paths=NULL, parallel.options=NULL, turbo=FALSE, tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, plot=NULL, alarm=FALSE, ...) ##S3 method for objects of class 'arx': ## S3 method for class 'arx' isat(y, mc=TRUE, ar=NULL, ewma=NULL, iis=FALSE, sis=TRUE, tis=FALSE, uis=FALSE, blocks=NULL, ratio.threshold=0.8, max.block.size=30, t.pval=0.001, wald.pval=t.pval, vcov.type= c("ordinary","white","newey-west"), do.pet=FALSE, ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL, info.method=c("sc","aic","hq"), user.diagnostics=NULL, user.estimator=NULL, gof.function=NULL, gof.method = c("min", "max"), include.gum=NULL, include.1cut=FALSE, include.empty=FALSE, max.paths=NULL, parallel.options=NULL, turbo=FALSE, tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, plot=NULL, alarm=FALSE, ...)
y |
numeric vector, time-series, |
mc |
logical. |
ar |
integer vector, say, c(2,4) or 1:4. The AR-lags to include in the mean specification |
ewma |
either NULL (default) or a list with arguments sent to the |
mxreg |
numeric vector or matrix, say, a |
iis |
logical. If |
sis |
logical. If |
tis |
logical. If |
uis |
a matrix of regressors, or a list of matrices. |
blocks |
|
ratio.threshold |
Minimum ratio of variables in each block to total observations to determine the block size, default=0.8. Only relevant if blocks = |
max.block.size |
Maximum size of block of variables to be selected over, default=30. Block size used is the maximum of given by either the ratio.threshold and max.block.size |
t.pval |
numeric value between 0 and 1. The significance level used for the two-sided regressor significance t-tests |
wald.pval |
numeric value between 0 and 1. The significance level used for the Parsimonious Encompassing Tests (PETs) |
vcov.type |
the type of variance-covariance matrix used. If NULL (default), then the type used is that of the 'arx' object. This can be overridden by either "ordinary" (i.e. the ordinary variance-covariance matrix) or "white" (i.e. the White (1980) heteroscedasticity robust variance-covariance matrix) |
do.pet |
logical. If |
ar.LjungB |
a two-item list with names |
arch.LjungB |
a two-item list with names |
normality.JarqueB |
|
info.method |
character string, "sc" (default), "aic" or "hq", which determines the information criterion to be used when selecting among terminal models. The abbreviations are short for the Schwarz or Bayesian information criterion (sc), the Akaike information criterion (aic) and the Hannan-Quinn (hq) information criterion |
user.diagnostics |
|
user.estimator |
|
gof.function |
|
gof.method |
|
include.gum |
ignored (temporarily deprecated) |
include.1cut |
logical. If |
include.empty |
logical. If |
max.paths |
|
parallel.options |
|
turbo |
logical. If |
tol |
numeric value (default = 1e-07). The tolerance for detecting linear dependencies in the columns of the regressors (see |
LAPACK |
logical. If |
max.regs |
integer. The maximum number of regressions along a deletion path. It is not recommended that this is altered |
print.searchinfo |
logical. If |
plot |
NULL or logical. If |
alarm |
logical. If |
... |
further arguments passed to or from other methods |
Multi-path indicator saturation using impulses (IIS), step-shifts (SIS), or trend-indicators (TIS). Indicators are partitioned into sequential blocks (as of beta version 0.7) where the block intervals are defined by the ratio of variables to observations in each block and a specified maximum block size. Indicators are selected over using the getsm
function. Retained indicators in each block are combined and re-selected over. Fixed covariates that are not selected over can be included in the regression model either in the mxreg matrix, or for auto-regressive terms through the ar specification. See Hendry, Johansen and Santos (2007) and Castle, Doornik, Hendry, and Pretis (2015)
A list of class 'isat'
Jonas Kurle, https://www.jonaskurle.com/
Felix Pretis, https://felixpretis.climateeconometrics.org/
James Reade, https://sites.google.com/site/jjamesreade/
Moritz Schwarz, https://www.inet.ox.ac.uk/people/moritz-schwarz
Genaro Sucarrat https://www.sucarrat.net/
Castle, Jennifer, L., Doornik, Jurgen, A., Hendry, David F., and Pretis, Felix (2015): 'Detecting Location Shifts during Model Selection by Step-Indicator Saturation', Econometrics, vol 3:2, 240-264.
Hendry, David, F., Johansen, Soren, and Santos, Carlos (2007): 'Automatic selection of indicators in a fully saturated regression'. Computational Statistics, vol 23:1, pp.317-335.
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44
Extraction functions for 'isat' objects: coef.isat
, fitted.isat
, paths
, plot.isat
, print.isat
,residuals.isat
, summary.isat
, terminals
, vcov.isat
Related functions: arx
, eqwma
, leqwma
, zoo
, getsFun
##SIS using the Nile data data(Nile) isat(Nile, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005) ##SIS using the Nile data in an autoregressive model #isat(Nile, ar=1:2, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005) ##HP Data ##load Hoover and Perez (1999) data: #data(hpdata) ##make quarterly data-matrix of zoo type ##(GCQ = personal consumption expenditure): #y <- zooreg(hpdata$GCQ, 1959, frequency=4) ##transform data to log-differences: #dlogy <- diff(log(y)) ##run isat with step impulse saturation on four ##lags and a constant 1 percent significance level: #isat(dlogy, ar=1:4, sis=TRUE, t.pval =0.01) ##Example with additional covariates entering through mxreg: ##(GYDQ = disposable personal income): #x <- zooreg(hpdata$GYDQ, 1959, frequency=4) ##transform data to log-differences: #dlogx <- diff(log(x)) ##run isat with step impulse saturation on four ##lags and a constant 1 percent significance level: #isat(dlogy, mxreg=dlogx, ar=1:4, sis=TRUE, t.pval =0.01)
##SIS using the Nile data data(Nile) isat(Nile, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005) ##SIS using the Nile data in an autoregressive model #isat(Nile, ar=1:2, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005) ##HP Data ##load Hoover and Perez (1999) data: #data(hpdata) ##make quarterly data-matrix of zoo type ##(GCQ = personal consumption expenditure): #y <- zooreg(hpdata$GCQ, 1959, frequency=4) ##transform data to log-differences: #dlogy <- diff(log(y)) ##run isat with step impulse saturation on four ##lags and a constant 1 percent significance level: #isat(dlogy, ar=1:4, sis=TRUE, t.pval =0.01) ##Example with additional covariates entering through mxreg: ##(GYDQ = disposable personal income): #x <- zooreg(hpdata$GYDQ, 1959, frequency=4) ##transform data to log-differences: #dlogx <- diff(log(x)) ##run isat with step impulse saturation on four ##lags and a constant 1 percent significance level: #isat(dlogy, mxreg=dlogx, ar=1:4, sis=TRUE, t.pval =0.01)
Takes an isat
object and extracts the break dates together with their estimated coefficients.
isatdates(x)
isatdates(x)
x |
an |
The function extracts the breakdates determined by isat
for iis
, sis
, and tis
, together with their estimated coefficients and standard errors.
Returns a list of three elements (one for iis
, sis
, and tis
). Each element lists the name of the break variable, the time index of the break (labelled 'date'), the index of the break date, the estimated coefficient, the standard error of the estimated coefficient, as well as the corresponding t-statistic and p-value.
Felix Pretis, https://felixpretis.climateeconometrics.org/
Pretis, F., Reade, J., & Sucarrat, G. (2018). Automated General-to-Specific (GETS) regression modeling and indicator saturation methods for the detection of outliers and structural breaks. Journal of Statistical Software, 86(3).
###Break date extraction of the Nile data nile <- as.zoo(Nile) isat.nile <- isat(nile, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005) isatdates(isat.nile)
###Break date extraction of the Nile data nile <- as.zoo(Nile) isat.nile <- isat(nile, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005) isatdates(isat.nile)
Runs isat
repeatedly at pre-specified significance levels to yield multiple iterations used inoutlierscaletest
.
isatloop(num=c(seq(from=20, to=1, by=-1)), t.pval.spec = FALSE, print=FALSE, y, ar=NULL, iis=TRUE, sis=FALSE, ...)
isatloop(num=c(seq(from=20, to=1, by=-1)), t.pval.spec = FALSE, print=FALSE, y, ar=NULL, iis=TRUE, sis=FALSE, ...)
num |
numeric, target expected number of outliers under the null hypothesis, or target proportion of outliers if |
t.pval.spec |
logical, if |
print |
logical, if |
y |
numeric vector, time-series or |
ar |
integer vector, say, c(2,4) or 1:4. The AR-lags to include in the mean specification |
iis |
logical, whether to use |
sis |
logical, whether to use |
... |
any argument from |
The function repeatedly runs isat
detecting outliers in a model of y
at different chosen target levels of significance speciefied in num
. The output of this function is used as the input for the outlierscaletest
function. All additional arguments from isat
can be passed to isatloop
.
Returns a list of two items. The first item is the number of observations. The second item is a dataframe containing the expected and observed proportion (and number of outliers) for each specified significance level of selection.
Felix Pretis, https://felixpretis.climateeconometrics.org/
Jiao, X. & Pretis, F. (2019). Testing the Presence of Outliers in Regression Models. Discussion Paper.
Pretis, F., Reade, J., & Sucarrat, G. (2018). Automated General-to-Specific (GETS) regression modeling and indicator saturation methods for the detection of outliers and structural breaks. Journal of Statistical Software, 86(3).
###Repeated isat models using the Nile dataset ### where p-values are chosen such that the expected number of outliers under the null ### corresponds to 1, 2, 3, 4 and 5. nile <- as.zoo(Nile) isat.nile.loop <- isatloop(y=nile, iis=TRUE, num=c(1,2, 3, 4, 5))
###Repeated isat models using the Nile dataset ### where p-values are chosen such that the expected number of outliers under the null ### corresponds to 1, 2, 3, 4 and 5. nile <- as.zoo(Nile) isat.nile.loop <- isatloop(y=nile, iis=TRUE, num=c(1,2, 3, 4, 5))
Takes an 'isat' object returned by the isat
function as input and returns the results of a hypothesis test on the time-varying intercept or long-run equilibrium against a specified null-hypothesis for a chosen level of significance - see Pretis (2015).
isattest(x, hnull=0, lr=FALSE, ci.pval=0.99, plot=NULL, plot.turn=FALSE, conscorr=FALSE, effcorr=FALSE, mcor = 1, biascorr=FALSE, mxfull = NULL, mxbreak=NULL)
isattest(x, hnull=0, lr=FALSE, ci.pval=0.99, plot=NULL, plot.turn=FALSE, conscorr=FALSE, effcorr=FALSE, mcor = 1, biascorr=FALSE, mxfull = NULL, mxbreak=NULL)
x |
a 'gets' object obtained with the |
hnull |
numeric. the null-hypothesis value to be tested against. |
lr |
logical. If TRUE and 'x' contains autoregressive elements, then |
ci.pval |
numeric between 0 and 1. Default is 0.99, the level of significance for the confidence interval of the test against 'hnull'. |
plot |
logical. If TRUE, then a plot showing the coefficient path and bias relative to 'hnull' is shown. |
plot.turn |
logical. If TRUE, then the plot output adds the time of the breaks to the plot showing the bias relative to 'hnull'. |
biascorr |
logical. If TRUE, then the coefficient path is bias-corrected using |
conscorr |
logical. If TRUE then the Johansen and Nielsen (2016) impulse-indicator consistency correction is applied to estimated residual variance. |
effcorr |
logical. If TRUE then the Johansen and Nielsen (2016) m-step efficiency correction is applied to estimated standard errors of ‘fixed’ regressors. |
mcor |
integer. The m-step efficiency correction factor, where m=mcor. |
mxfull |
string. The name of the full-sample variable when constructing the coefficient path of user-specified break variables. |
mxbreak |
string. The name of the break variables used to construct the coefficient path of user-specified break variables. |
The function tests the coefficient path (or long-run equilibrium path) against a specified null hypothesis at a chosen level of significance. If conducted on an isat
model of a forecast error or relative forecast differential, then this corresponds to the test of time-varying predictive accuracy of Pretis (2015). The resulting output plot shows the coefficient path in the top panel (where 'hnull' is plotted as dotted lines), with the bias (significant difference relative to 'hnull') in the lower panel. If mxfull
and mxbreak
are specified, then the function tests on the coefficient path of the user-specified variable, where mxfull
denotes the ful-sample variable name, to which the mxbreak
variables are added. To correct for the under-estimation of the residual variance, the argument conscorr
implements the Johansen and Nielsen (2016) consistency correction, and effcorr
adds the efficiency correction for standard errors on fixed regressors which are not selected over.
A Tx4 matrix (with T = number of observations) where the first two columns denote the confidence interval of the coefficient path (or the long-run equilibrium path if 'lr=TRUE'). The third and fourth column denote the bias of the coefficient path relative to the chosen null-hypothesis, where 'bias.high' denotes the bias when the series tested is above the hypothesized value, and 'bias.low' denotes the bias when the series tested is significantly below the hypothesized value.
Felix Pretis, https://felixpretis.climateeconometrics.org/
Johansen, S., & Nielsen, B. (2016): 'Asymptotic theory of outlier detection algorithms for linear time series regression models.' Scandinavian Journal of Statistics, 43(2), 321-348.
Pretis, F. (2015): 'Testing for time-varying predictive accuracy using bias-corrected indicator saturation'. Oxford Department of Economics Discussion Paper.
Hendry, David, F., Johansen, Soren, and Santos, Carlos (2007): 'Automatic selection of indicators in a fully saturated regression'. Computational Statistics, vol 23:1, pp.317-335.
isat
, coef.gets
, plot.gets
, biascorr
, isatvar
##Using artificial data: #set.seed(123) #d <- matrix(0,100,1) #d[35:55] <- 1 #e <- rnorm(100, 0, 1) #y <- d*2 +e #plot(y, type="l") ##Static Test against hnull=0 using bias-correction: #ys <- isat(y, sis=TRUE, iis=FALSE, tis=FALSE, t.pval=0.01) #isattest(ys, hnull=0, lr=FALSE, ci.pval = 0.99, plot.turn = FALSE, biascorr=TRUE) ##Dynamic Test of the long-run equilibrium against hnull=2 with breakpoints ##labelled in the plot: #ys <- isat(y, sis=TRUE, iis=FALSE, tis=FALSE, t.pval=0.01, ar=1:2) #isattest(ys, hnull=2, lr=TRUE, ci.pval = 0.99, plot.turn = TRUE, biascorr=FALSE)
##Using artificial data: #set.seed(123) #d <- matrix(0,100,1) #d[35:55] <- 1 #e <- rnorm(100, 0, 1) #y <- d*2 +e #plot(y, type="l") ##Static Test against hnull=0 using bias-correction: #ys <- isat(y, sis=TRUE, iis=FALSE, tis=FALSE, t.pval=0.01) #isattest(ys, hnull=0, lr=FALSE, ci.pval = 0.99, plot.turn = FALSE, biascorr=TRUE) ##Dynamic Test of the long-run equilibrium against hnull=2 with breakpoints ##labelled in the plot: #ys <- isat(y, sis=TRUE, iis=FALSE, tis=FALSE, t.pval=0.01, ar=1:2) #isattest(ys, hnull=2, lr=TRUE, ci.pval = 0.99, plot.turn = TRUE, biascorr=FALSE)
Takes an 'isat' object returned by the isat
function as input and returns the coefficient path of the constant (and long-run equilibrium if 'lr' is specified) together with its approximate variance and standard errors. If mxfull
and mxbreak
are specified, then the function returns the coefficient path of the user-specified variable.
isatvar(x, lr=FALSE, conscorr=FALSE, effcorr=FALSE, mcor = 1, mxfull = NULL, mxbreak=NULL)
isatvar(x, lr=FALSE, conscorr=FALSE, effcorr=FALSE, mcor = 1, mxfull = NULL, mxbreak=NULL)
x |
a 'gets' object obtained with the |
lr |
logical. If TRUE and 'x' contains autoregressive elements, then |
conscorr |
logical. If TRUE then the Johansen and Nielsen (2016) impulse-indicator consistency correction is applied to estimated residual variance. |
effcorr |
logical. If TRUE then the Johansen and Nielsen (2016) m-step efficiency correction is applied to estimated standard errors of ‘fixed’ regressors. |
mcor |
integer. The m-step efficiency correction factor, where m=mcor. |
mxfull |
string. The name of the full-sample variable when constructing the coefficient path of user-specified break variables. |
mxbreak |
string. The name of the break variables used to construct the coefficient path of user-specified break variables. |
The function computes the approximate variance and standard errors of the intercept term with structural breaks determined by isat
. This permits hypothesis testing and plotting of approximate confidence intervals for the intercept in the presence of structural breaks. For dynamic autoregressive models in isat
the lr
argument returns the time-varying long-run equilibrium together with its approximate variance and standard errors. If mxfull
and mxbreak
are specified, then the function returns the coefficient path of the user-specified variable, where mxfull
denotes the ful-sample variable name, to which the mxbreak
variables are added. To correct for the under-estimation of the residual variance, the argument conscorr
implements the Johansen and Nielsen (2016) consistency correction, and effcorr
adds the efficiency correction for standard errors on fixed regressors which are not selected over.
If lr=FALSE
: A Tx4 matrix (with T = number of observations) where the first column denotes the coefficient path relative to the full sample coefficient, the second column the coefficient path of the intercept, the third the approximate variance of the coefficient path, and the fourth column the approximate standard errors of the coefficient path. If lr=TRUE
: A Tx7 matrix where the first four columns are identical to the lr=FALSE
case, and the additional columns denote the long-run equilibrium coefficient path, together with the approximate variance and standard errors of the long-run equilibrium coefficient path.
Felix Pretis, https://felixpretis.climateeconometrics.org/
James Reade, https://sites.google.com/site/jjamesreade/
Pretis, F. (2015): 'Testing for time-varying predictive accuracy using bias-corrected indicator saturation'. Oxford Department of Economics ???orking Paper.
Johansen, S., & Nielsen, B. (2016): 'Asymptotic theory of outlier detection algorithms for linear time series regression models.' Scandinavian Journal of Statistics, 43(2), 321-348.
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44
isat
, coef.gets
, plot.gets
, biascorr
, isattest
##Variance in presence of a break #nile <- as.zoo(Nile) #isat.nile <- isat(nile, sis=TRUE, iis=FALSE, plot=FALSE, t.pval=0.005) #var <- isatvar(isat.nile) #plot(nile) #lines(isat.nile$mean.fit, col="red") #lines(isat.nile$mean.fit + 2*var$const.se, col="blue", lty=3) #lines(isat.nile$mean.fit - 2*var$const.se, col="blue", lty=3) ##Variance when there is no break #set.seed(1) #x <- as.zoo(rnorm(100, 0, 1)) #isat.x <- isat(x, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005) #var.x <- isatvar(isat.x) #plot(x) #lines(isat.x$mean.fit, col="red") #lines(isat.x$mean.fit + 2*var.x[,2], col="blue", lty=3) #lines(isat.x$mean.fit - 2*var.x[,2], col="blue", lty=3) ##Variance of the long-run equilibrium coefficient path #nile <- as.zoo(Nile) #isat.nile <- isat(nile, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005, ar=1:2) #var <- isatvar(isat.nile, lr=TRUE)
##Variance in presence of a break #nile <- as.zoo(Nile) #isat.nile <- isat(nile, sis=TRUE, iis=FALSE, plot=FALSE, t.pval=0.005) #var <- isatvar(isat.nile) #plot(nile) #lines(isat.nile$mean.fit, col="red") #lines(isat.nile$mean.fit + 2*var$const.se, col="blue", lty=3) #lines(isat.nile$mean.fit - 2*var$const.se, col="blue", lty=3) ##Variance when there is no break #set.seed(1) #x <- as.zoo(rnorm(100, 0, 1)) #isat.x <- isat(x, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005) #var.x <- isatvar(isat.x) #plot(x) #lines(isat.x$mean.fit, col="red") #lines(isat.x$mean.fit + 2*var.x[,2], col="blue", lty=3) #lines(isat.x$mean.fit - 2*var.x[,2], col="blue", lty=3) ##Variance of the long-run equilibrium coefficient path #nile <- as.zoo(Nile) #isat.nile <- isat(nile, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005, ar=1:2) #var <- isatvar(isat.nile, lr=TRUE)
Takes an isat
object and corrects the estimates of the error variance and the estimated standard errors of 'forced' regressors.
isatvarcorrect(x, mcor=1)
isatvarcorrect(x, mcor=1)
x |
an |
mcor |
integer, number of iterations in the correction. Default = 1. |
Impulse indicator saturation results in an under-estimation of the error variance as well as the variance of regressors not selected over. The magnitude of the inconsistency increases with the p-value of selection (t.pval
). The function takes an isat
object and applies the impulse indicator consistency (isvarcor
) and efficiency correction (isvareffcor
) of the estimated error variance and the estimated variance of regressors not selected over. See Johansen and Nielsen (2016a) and (2016b).
Returns an isat
object in which the estimated standard errors, t-statistics, p-values, standard error of the regression, and log-likelihood are consistency and efficiency corrected when using impulse indicator saturation (iis=TRUE
).
Felix Pretis, https://felixpretis.climateeconometrics.org/
Johansen, S., & Nielsen, B. (2016a). Asymptotic theory of outlier detection algorithms for linear time series regression models. Scandinavian Journal of Statistics, 43(2), 321-348.
Johansen, S., & Nielsen, B. (2016b). Rejoinder: Asymptotic Theory of Outlier Detection Algorithms for Linear. Scandinavian Journal of Statistics, 43(2), 374-381.
Pretis, F., Reade, J., & Sucarrat, G. (2018). Automated General-to-Specific (GETS) regression modeling and indicator saturation methods for the detection of outliers and structural breaks. Journal of Statistical Software, 86(3).
###Consistency and Efficiency Correction of Impulse Indicator Estimates nile <- as.zoo(Nile) isat.nile <- isat(nile, sis=FALSE, iis=TRUE, plot=TRUE, t.pval=0.1) isat.nile.corrected <- isatvarcorrect(isat.nile) isat.nile$sigma2 isat.nile.corrected$sigma2
###Consistency and Efficiency Correction of Impulse Indicator Estimates nile <- as.zoo(Nile) isat.nile <- isat(nile, sis=FALSE, iis=TRUE, plot=TRUE, t.pval=0.1) isat.nile.corrected <- isatvarcorrect(isat.nile) isat.nile$sigma2 isat.nile.corrected$sigma2
Consistency correction for estimate of residual variance when using impulse indicator saturation.
isvarcor(t.pval, sigma)
isvarcor(t.pval, sigma)
t.pval |
numeric value. the p-value of selection in the impulse indicator saturation model. |
sigma |
numeric value. The estimated standard deviation of the residuals from the impulse indicator saturation model. |
The Johansen and Nielsen (2016) impulse-indicator consistency correction for the estimated residual standard deviation.
a data frame containing the corrected standard deviation $sigma.cor
and the correction factor used $corxi
Felix Pretis, https://felixpretis.climateeconometrics.org/
Johansen, S., & Nielsen, B. (2016): 'Asymptotic theory of outlier detection algorithms for linear time series regression models.' Scandinavian Journal of Statistics, 43(2), 321-348.
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44
isvarcor(t.pval=0.05, sigma=2)
isvarcor(t.pval=0.05, sigma=2)
Efficiency correction for the estimates of coefficient standard errors on fixed regressors.
isvareffcor(t.pval, se, m=1)
isvareffcor(t.pval, se, m=1)
t.pval |
numeric value. the p-value of selection in the impulse indicator saturation model. |
se |
numeric value or vector. The estimated standard errors of the coefficients on fixed regressors in impulse indicator saturation model. |
m |
integer. The m-step correction factor. |
The Johansen and Nielsen (2016) impulse-indicator efficiency correction for the estimated standard errors on fixed regressors in impulse indicator models.
a data frame containing the corrected standard deviation $se.cor
and the correction factor used $eta.m
Felix Pretis, https://felixpretis.climateeconometrics.org/
Johansen, S., & Nielsen, B. (2016): 'Asymptotic theory of outlier detection algorithms for linear time series regression models.' Scandinavian Journal of Statistics, 43(2), 321-348.
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44
isvareffcor(t.pval=0.05, se=2, m=1)
isvareffcor(t.pval=0.05, se=2, m=1)
The function larch()
estimates a heterogeneous log-ARCH-X model, which is a generalisation of the dynamic log-variance model in Pretis, Reade and Sucarrat (2018). Internally, estimation is undertaken by a call to larchEstfun
. The log-variance specification can contain log-ARCH terms, log-HARCH terms, asymmetry terms ('leverage'), the log of volatility proxies made up of past returns and other covariates ('X'), for example Realised Volatility (RV), volume or the range.
larch(e, vc=TRUE, arch = NULL, harch = NULL, asym = NULL, asymind = NULL, log.ewma = NULL, vxreg = NULL, zero.adj = NULL, vcov.type = c("robust", "hac"), qstat.options = NULL, normality.JarqueB = FALSE, tol = 1e-07, singular.ok = TRUE, plot = NULL)
larch(e, vc=TRUE, arch = NULL, harch = NULL, asym = NULL, asymind = NULL, log.ewma = NULL, vxreg = NULL, zero.adj = NULL, vcov.type = c("robust", "hac"), qstat.options = NULL, normality.JarqueB = FALSE, tol = 1e-07, singular.ok = TRUE, plot = NULL)
e |
|
vc |
|
arch |
either |
harch |
either |
asym |
either |
asymind |
either |
log.ewma |
either |
vxreg |
either |
zero.adj |
|
vcov.type |
|
qstat.options |
|
normality.JarqueB |
|
tol |
|
singular.ok |
|
plot |
|
No details for the moment
A list of class 'larch'
Genaro Sucarrat: https://www.sucarrat.net/
G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270
F. Corsi (2009): 'A Simple Approximate Long-Memory Model of Realized Volatility', Journal of Financial Econometrics 7, pp. 174-196
C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259. doi:10.1016/0165-1765(80)90024-5
U. Muller, M. Dacorogna, R. Dave, R. Olsen, O. Pictet and J. von Weizsacker (1997): 'Volatilities of different time resolutions - analyzing the dynamics of market components'. Journal of Empirical Finance 4, pp. 213-239
F. Pretis, J. Reade and G. Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. doi:10.18637/jss.v086.i03
H. White (1980): 'A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity', Econometrica 48, pp. 817-838.
W.K. Newey and K.D. West (1987): 'A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix', Econometrica 55, pp. 703-708.
Methods and extraction functions (mostly S3 methods): coef.larch
, ES
, fitted.larch
, gets.larch
, logLik.larch
, nobs.larch
, plot.larch
, predict.larch
, print.larch
, residuals.larch
, summary.larch
, VaR
, toLatex.larch
and vcov.arx
##Simulate some data: set.seed(123) e <- rnorm(40) x <- matrix(rnorm(40*2), 40, 2) ##estimate a log-variance specification with a log-ARCH(4) ##structure: larch(e, arch=1:4) ##estimate a log-variance specification with a log-ARCH(4) ##structure, a log-HARCH(5) term and a first-order asymmetry/leverage ##term: larch(e, arch=1:4, harch=5, asym=1) ##estimate a log-variance specification with a log-ARCH(4) ##structure, an asymmetry/leverage term, a 10-period log(EWMA) as ##volatility proxy, and the log of the squareds of the conditioning ##regressors in the log-variance specification: larch(e, arch=1:4, asym=1, log.ewma=list(length=10), vxreg=log(x^2))
##Simulate some data: set.seed(123) e <- rnorm(40) x <- matrix(rnorm(40*2), 40, 2) ##estimate a log-variance specification with a log-ARCH(4) ##structure: larch(e, arch=1:4) ##estimate a log-variance specification with a log-ARCH(4) ##structure, a log-HARCH(5) term and a first-order asymmetry/leverage ##term: larch(e, arch=1:4, harch=5, asym=1) ##estimate a log-variance specification with a log-ARCH(4) ##structure, an asymmetry/leverage term, a 10-period log(EWMA) as ##volatility proxy, and the log of the squareds of the conditioning ##regressors in the log-variance specification: larch(e, arch=1:4, asym=1, log.ewma=list(length=10), vxreg=log(x^2))
Two-step estimation of a log-variance model: OLS in step 1, bias correction w/residuals in step 2 (see the code for details). The function larchEstfun()
is not intended for the average user, but is called by larch
and gets.larch
.
larchEstfun(loge2, x, e, vcov.type = c("robust", "hac"), tol = 1e-07)
larchEstfun(loge2, x, e, vcov.type = c("robust", "hac"), tol = 1e-07)
loge2 |
numeric vector, the log of the squared errors 'e' (adjusted for zeros on e, if any) |
x |
numeric matrix, the regressors |
e |
numeric vector, the errors |
vcov.type |
|
tol |
numeric value. The tolerance for detecting linear dependencies in the columns of the regressors in the first step estimation by OLS, see |
No details for the moment.
A list
.
Genaro Sucarrat, http://www.sucarrat.net/
No references for the moment.
##no examples for the moment
##no examples for the moment
Maximum Likelihood (ML) estimation of a logit model.
logit(y, x, initial.values = NULL, lower = -Inf, upper = Inf, method = 2, lag.length = NULL, control = list(), eps.tol = .Machine$double.eps, solve.tol = .Machine$double.eps )
logit(y, x, initial.values = NULL, lower = -Inf, upper = Inf, method = 2, lag.length = NULL, control = list(), eps.tol = .Machine$double.eps, solve.tol = .Machine$double.eps )
y |
numeric vector, the binary process |
x |
numeric matrix, the regressors |
initial.values |
|
lower |
numeric vector, either of length 1 or the number of parameters to be estimated, see |
upper |
numeric vector, either of length 1 or the number of parameters to be estimated, see |
method |
an integer that determines the expression for the coefficient-covariance, see "details" |
lag.length |
|
control |
a |
eps.tol |
numeric, a small value that ensures the fitted zero-probabilities are not too small when the log-transformation is applied when computing the log-likelihood |
solve.tol |
numeric value passed on to the |
No details for the moment.
A list
.
Genaro Sucarrat, http://www.sucarrat.net/
No references for the moment.
##no examples for the moment
##no examples for the moment
Estimate a dynamic Autoregressive (AR) logit model with covariates ('X') by maximising the logit likelihood.
logitx(y, intercept = TRUE, ar = NULL, ewma = NULL, xreg = NULL, vcov.type = c("ordinary", "robust"), lag.length = NULL, initial.values = NULL, lower = -Inf, upper = Inf, control = list(), eps.tol = .Machine$double.eps, solve.tol = .Machine$double.eps, singular.ok = TRUE, plot = NULL) dlogitx(y, ...)
logitx(y, intercept = TRUE, ar = NULL, ewma = NULL, xreg = NULL, vcov.type = c("ordinary", "robust"), lag.length = NULL, initial.values = NULL, lower = -Inf, upper = Inf, control = list(), eps.tol = .Machine$double.eps, solve.tol = .Machine$double.eps, singular.ok = TRUE, plot = NULL) dlogitx(y, ...)
y |
a binary numeric vector, time-series or |
intercept |
logical. |
ar |
either |
ewma |
either |
xreg |
either |
vcov.type |
character vector of length 1, either "ordinary" (default) or "robust". Partial matching is allowed. If "ordinary", then the ordinary variance-covariance matrix is used for inference. If "robust", then a robust coefficient-covariance of the Newey and West (1987) type is used |
lag.length |
|
initial.values |
|
lower |
numeric vector, either of length 1 or the number of parameters to be estimated, see |
upper |
numeric vector, either of length 1 or the number of parameters to be estimated, see |
control |
a |
eps.tol |
numeric, a small value that ensures the fitted zero-probabilities are not too small when the log-transformation is applied when computing the log-likelihood |
solve.tol |
numeric value passed on to the |
singular.ok |
logical. If |
plot |
|
... |
arguments passed on to |
The function estimates a dynamic Autoregressive (AR) logit model with (optionally) covariates ('X') by maximising the logit likelihood. The estimated model is an augmented version of the model considered by Kauppi and Saikkonen (2008). Also, they considered estimation is by maximisation of the probit likelihood. Here, by contrast, estimation is by maximisation of the logit likelihood.
A list of class 'logitx'.
Genaro Sucarrat, http://www.sucarrat.net/
Heikki Kauppi and Pentti Saikkonen (2008): 'Predicting U.S. Recessions with Dynamic Binary Response Models'. The Review of Economics and Statistics 90, pp. 777-791
Whitney K. Newey and Kenned D. West (1987): 'A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix', Econometrica 55, pp. 703-708
Methods: coef.logitx
, fitted.logitx
, gets.logitx
, logLik.logitx
, plot.logitx
, print.logitx
, summary.logitx
, toLatex.logitx
and vcov.logitx
Related functions: logitxSim
, logit
, nlminb
##simulate from ar(1): set.seed(123) #for reproducibility y <- logitxSim(100, ar=0.3) ##estimate ar(1) and store result: mymod <- logitx(y, ar=1) ##estimate ar(4) and store result: mymod <- logitx(y, ar=1:4) ##create some more data, estimate new model: x <- matrix(rnorm(5*100), 100, 5) mymod <- logitx(y, ar=1:4, xreg=x)
##simulate from ar(1): set.seed(123) #for reproducibility y <- logitxSim(100, ar=0.3) ##estimate ar(1) and store result: mymod <- logitx(y, ar=1) ##estimate ar(4) and store result: mymod <- logitx(y, ar=1:4) ##create some more data, estimate new model: x <- matrix(rnorm(5*100), 100, 5) mymod <- logitx(y, ar=1:4, xreg=x)
Simulate from a dynamic Autoregressive (AR) logit model with covariates ('X'). This model is essentially a logit-version of the model of Kauppi and Saikkonen (2008).
logitxSim(n, intercept = 0, ar = NULL, xreg = NULL, verbose = FALSE, as.zoo = TRUE) dlogitxSim(n, ...)
logitxSim(n, intercept = 0, ar = NULL, xreg = NULL, verbose = FALSE, as.zoo = TRUE) dlogitxSim(n, ...)
n |
integer, the number of observations to generate |
intercept |
numeric, the value of the intercept in the logit specification |
ar |
|
xreg |
|
verbose |
|
as.zoo |
|
... |
arguments passed on to |
No details, for the moment.
A vector or matrix, depending on whether verbose
is FALSE
or TRUE
, of class zoo
, depending on whether as.zoo
is TRUE
or FALSE
Genaro Sucarrat, http://www.sucarrat.net/
Heikki Kauppi and Penti Saikkonen (2008): 'Predicting U.S. Recessions with Dynamic Binary Response Models'. The Review of Economic Statistics 90, pp. 777-791
##simulate from ar(1): set.seed(123) #for reproducibility y <- logitxSim(100, ar=0.3) ##more output (value, probability, logit): set.seed(123) #for reproducibility y <- logitxSim(100, ar=0.3, verbose=TRUE)
##simulate from ar(1): set.seed(123) #for reproducibility y <- logitxSim(100, ar=0.3) ##more output (value, probability, logit): set.seed(123) #for reproducibility y <- logitxSim(100, ar=0.3, verbose=TRUE)
Produces one or more samples from the specified multivariate normal distribution. Used
inoutlierscaletest
.
mvrnormsim(n = 1, mu, Sigma, tol = 1e-6, empirical = FALSE)
mvrnormsim(n = 1, mu, Sigma, tol = 1e-6, empirical = FALSE)
n |
the number of samples required. |
mu |
a vector giving the means of the variables. |
Sigma |
a positive-definite symmetric matrix specifying the covariance matrix of the variables. |
tol |
tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma. |
empirical |
logical. If true, mu and Sigma specify the empirical not population mean and covariance matrix. |
Original function mvrnorm
developed by Venables, W. N. & Ripley. in package MASS
, https://CRAN.R-project.org/package=MASS.
If n = 1 a vector of the same length as mu, otherwise an n by length(mu) matrix with one sample in each row.
Venables, W. N. & Ripley, with modifications by Felix Pretis, https://felixpretis.climateeconometrics.org/
Venables, W. N. & Ripley, B. D. (2019): 'MASS: Support Functions and Datasets for Venables and Ripley's MASS'. https://CRAN.R-project.org/package=MASS
Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0
Sigma <- matrix(c(3,2,1,7),2,2) mvrnormsim(n=2, mu=c(1,2), Sigma)
Sigma <- matrix(c(3,2,1,7),2,2) mvrnormsim(n=2, mu=c(1,2), Sigma)
OLS estimation with the QR decomposition and, for some options, computation of variance-covariance matrices
ols(y, x, untransformed.residuals=NULL, tol=1e-07, LAPACK=FALSE, method=3, variance.spec=NULL, ...)
ols(y, x, untransformed.residuals=NULL, tol=1e-07, LAPACK=FALSE, method=3, variance.spec=NULL, ...)
y |
numeric vector, the regressand |
x |
numeric matrix, the regressors |
untransformed.residuals |
|
tol |
numeric value. The tolerance for detecting linear dependencies in the columns of the regressors, see the |
LAPACK |
deprecated and ignored |
method |
an integer, 1 to 6, that determines the estimation method |
variance.spec |
|
... |
further arguments (currently ignored) |
method = 1
or method = 2
only returns the OLS coefficient estimates together with the QR- information, the former being slightly faster. method=3
returns, in addition, the ordinary variance-covariance matrix of the OLS estimator. method=4
returns the White (1980) heteroscedasticity robust variance-covariance matrix in addition to the information returned by method=3
, whereas method=5
does the same except that the variance-covariance matrix now is that of Newey and West (1987). method=6
undertakes OLS estimation of a log-variance model, see Pretis, Reade and Sucarrat (2018, Section 4). Alternatively, for method
1 to 5, a log-variance model is also estimated if variance.spec
is not NULL
.
A list with items depending on method
Genaro Sucarrat, http://www.sucarrat.net/
W. Newey and K. West (1987): 'A Simple Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix', Econometrica 55, pp. 703-708.
F. Pretis, J. Reade and G. Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks', Journal of Statistical Software 86, Issue 3, pp. 1-44, DOI: https://doi.org/10.18637/jss.v086.i03
H. White (1980): 'A Heteroskedasticity-Consistent Covariance Matrix and a Direct Test for Heteroskedasticity', Econometrica 48, pp. 817-838.
Computes the Sum and Supremum Scaling Tests for the overall presence of outliers based on Jiao and Pretis (2019).
outlierscaletest(x, nsim = 10000)
outlierscaletest(x, nsim = 10000)
x |
list, output of the |
nsim |
integer, number of replications to simulate critical values for the Sup test |
The function takes the output of the isatloop
function and computes the Scaling Sum and Supremum Tests for the presence of outliers from Jiao and Pretis (2019). The test compares the expected and observed proportion of outliers over the range of different significance levels of selection specified in isatloop
. The Sum test compares the sum of deviations against the standard normal distribution, the Sup test compares the supremum of deviations against critical values simulated with nsim
replications. The null hypothesis is that the observed proportion of outliers scales with the proportion of outliers under the null of no outliers.
Returns a list of two htest
objects. The first providing the results of the Sum test on the sum of the deviation of outliers against a standard normal distribution. The second providing the results on the supremum of the deviation of outliers against simulated critical values.
Xiyu Jiao, & Felix Pretis, https://felixpretis.climateeconometrics.org/
Jiao, X. & Pretis, F. (2019). Testing the Presence of Outliers in Regression Models. Discussion Paper.
Pretis, F., Reade, J., & Sucarrat, G. (2018). Automated General-to-Specific (GETS) regression modeling and indicator saturation methods for the detection of outliers and structural breaks. Journal of Statistical Software, 86(3).
###Repeated isat models using the Nile dataset ### where p-values are chosen such that the expected number of outliers under the null ### corresponds to 1, 2, ..., 20. Then computing the Outlier Scaling Tests: #nile <- as.zoo(Nile) #isat.nile.loop <- isatloop(y=nile) #outlierscaletest(isat.nile.loop)
###Repeated isat models using the Nile dataset ### where p-values are chosen such that the expected number of outliers under the null ### corresponds to 1, 2, ..., 20. Then computing the Outlier Scaling Tests: #nile <- as.zoo(Nile) #isat.nile.loop <- isatloop(y=nile) #outlierscaletest(isat.nile.loop)
Tests whether the proportion (or number) of outliers detected using impulse indicator saturation is different from the proportion (or number) of outliers expected under the null hypothesis of no outliers using the Jiao and Pretis (2019) proportion and count outlier tests.
outliertest(x, noutl=NULL, t.pval=NULL, T=NULL, m=1, infty=FALSE, alternative="two.sided")
outliertest(x, noutl=NULL, t.pval=NULL, T=NULL, m=1, infty=FALSE, alternative="two.sided")
x |
an |
noutl |
integer, number of detected outliers if no |
t.pval |
numeric, between 0 and 1. Selection p-value used in indicator saturation if no |
T |
integer, sample sized used in indicator saturation if no |
m |
integer, number of iterations in variance computation, default=1 |
infty |
logical, argument used for variance computation |
alternative |
"two-sided", "less", "greater", alternative hypothesis of outlier test. |
The function computes the estimated proportion of outliers (gauge) based on impulse indicator saturation and constructs the proportion and count outlier test statistics from Jiao and Pretis (2019). The null hypothesis is that the proportion (or count) of outliers is not different than the proportion (or count) of outliers detected under the null hypothesis of no outliers. The first test compares the estimated proportion of outliers scaled by its estimated variance against a standard normal distribution. The second test compares the number of outliers against a Poisson distribution.
If an isat
object is provided in x
, then the function automatically extracts the detected impulses and computes the estimated outlier proportion. If no isat
object is provided and x=NULL
, then the tests can be conducted manually by providing the number of detected outliers (noutl
), the sample size (T
), and the chosen level of signficance used to detect outliers (t.pval
).
Returns a list of two htest
objects. The first providing the results of the test on the proportion of outliers against a standard normal distribution. The second providing the results on the number of outliers against the Poisson distribution.
Xiyu Jiao, & Felix Pretis, https://felixpretis.climateeconometrics.org/
Jiao, X. & Pretis, F. (2019). Testing the Presence of Outliers in Regression Models. Discussion Paper.
Pretis, F., Reade, J., & Sucarrat, G. (2018). Automated General-to-Specific (GETS) regression modeling and indicator saturation methods for the detection of outliers and structural breaks. Journal of Statistical Software, 86(3).
###Testing the Presence of Outliers in the Nile Data nile <- as.zoo(Nile) isat.nile <- isat(nile, sis=FALSE, iis=TRUE, plot=TRUE, t.pval=0.1) outliertest(isat.nile) ###Testing the number of outliers when the sample is T=200, ### with 7 detected outliers at t.pval=0.05 if no isat object is provided: outliertest(x=NULL, noutl=7, t.pval=0.05, T=200)
###Testing the Presence of Outliers in the Nile Data nile <- as.zoo(Nile) isat.nile <- isat(nile, sis=FALSE, iis=TRUE, plot=TRUE, t.pval=0.1) outliertest(isat.nile) ###Testing the number of outliers when the sample is T=200, ### with 7 detected outliers at t.pval=0.05 if no isat object is provided: outliertest(x=NULL, noutl=7, t.pval=0.05, T=200)
Extraction functions for objects of class 'arx', 'gets' and 'isat'
paths(object, ...) terminals(object, ...) rsquared(object, adjusted=FALSE, ...)
paths(object, ...) terminals(object, ...) rsquared(object, adjusted=FALSE, ...)
object |
an object of class 'arx', 'gets' or 'isat' |
adjusted |
|
... |
additional arguments |
paths
and terminals
can only be applied on objects of class 'gets' and 'isat'
paths: |
a |
terminals: |
a |
rsquared: |
a |
Genaro Sucarrat, http://www.sucarrat.net/
##Simulate from an AR(1): set.seed(123) y <- arima.sim(list(ar=0.4), 50) ##Simulate four independent Gaussian regressors: xregs <- matrix(rnorm(4*50), 50, 4) ##estimate an AR(2) with intercept and four conditioning ##regressors in the mean: mymod <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs) rsquared(mymod) rsquared(mymod, adjusted=TRUE) ##General-to-Specific (GETS) modelling of the mean: meanmod <- getsm(mymod) rsquared(meanmod) rsquared(meanmod, adjusted=TRUE) ##extract the paths searched: paths(meanmod) ##extract the terminal models: terminals(meanmod)
##Simulate from an AR(1): set.seed(123) y <- arima.sim(list(ar=0.4), 50) ##Simulate four independent Gaussian regressors: xregs <- matrix(rnorm(4*50), 50, 4) ##estimate an AR(2) with intercept and four conditioning ##regressors in the mean: mymod <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs) rsquared(mymod) rsquared(mymod, adjusted=TRUE) ##General-to-Specific (GETS) modelling of the mean: meanmod <- getsm(mymod) rsquared(meanmod) rsquared(meanmod, adjusted=TRUE) ##extract the paths searched: paths(meanmod) ##extract the terminal models: terminals(meanmod)
Auxiliary function that creates periodicity dummies (e.g. seasonal dummies) for regular time series. The function is similar to, but more general than, the seasonaldummy
function in the package forecast.
periodicdummies(x, values=1)
periodicdummies(x, values=1)
x |
a regular time series (vector or matrix) |
values |
numeric of length 1 (default) or numeric vector of length equal to |
A matrix of class zoo
with periodicity dummies
Genaro Sucarrat, http://www.sucarrat.net/
is.regular
, zooreg
, zoo
, ts
##quarterly dummies: x <- zooreg(rnorm(30), start=2000, frequency=4) periodicdummies(x) ##monthly dummies: y <- zooreg(rnorm(30), start=c(2000,1), frequency=12) periodicdummies(y)
##quarterly dummies: x <- zooreg(rnorm(30), start=2000, frequency=4) periodicdummies(x) ##monthly dummies: y <- zooreg(rnorm(30), start=c(2000,1), frequency=12) periodicdummies(y)
Generate out-of-sample forecasts up to n steps ahead for objects of class arx
. Optionally, quantiles of the forecasts are also returned if any of the arguments ci.levels
or probs
are specified. The forecasts, confidence intervals and quantiles are obtained via simulation. By default, 5000 simulations is used, but this can be changed via the n.sim
argument. Also by default, the simulations uses a classical bootstrap to sample from the standardised residuals. To use an alternative set of standardised innovations, for example the standard normal, use the innov
argument. If plot=TRUE
, then a plot of the forecasts is created.
## S3 method for class 'arx' predict(object, spec=NULL, n.ahead=12, newmxreg=NULL, newvxreg=NULL, newindex=NULL, n.sim=5000, innov=NULL, probs=NULL, ci.levels=NULL, quantile.type=7, return=TRUE, verbose=FALSE, plot=NULL, plot.options=list(), ...)
## S3 method for class 'arx' predict(object, spec=NULL, n.ahead=12, newmxreg=NULL, newvxreg=NULL, newindex=NULL, n.sim=5000, innov=NULL, probs=NULL, ci.levels=NULL, quantile.type=7, return=TRUE, verbose=FALSE, plot=NULL, plot.options=list(), ...)
object |
an object of class 'arx' |
spec |
|
n.ahead |
|
newmxreg |
a |
newvxreg |
a |
newindex |
|
n.sim |
|
innov |
|
probs |
|
ci.levels |
|
quantile.type |
an integer between 1 and 9 that selects which algorithm to be used in computing the quantiles, see the argument |
return |
logical. If |
verbose |
logical with default |
plot |
|
plot.options |
a |
... |
additional arguments |
The plot.options
argument is a list
that, optionally, can contain any of the following arguments:
keep
: integer greater than zero (the default is 12) that controls the number of in-sample actual values to plot
line.at.origin
: logical. If TRUE
, then a vertical line is drawn at the forecast origin, that is, at the last in-sample observation
start.at.origin
: logical. If TRUE
, then the drawing of the forecast line starts at the actual value of the forecast origin
dot.at.origin
: logical. If TRUE
, then a dot is drawn at the forecast origin
hlines
: numeric vector that indicates where to draw grey horisontal grid lines
col
: numeric vector of length two that controls the colour of the plotted lines. The first value controls the colour of the forecasts and the fitted values, whereas the second controls the colour of the actual values
lty
: numeric vector of length two that controls the line type. The first value controls the line type of the forecast, whereas the second controls the line type of the actual and fitted values
lwd
: an integer that controls the width of the plotted lines (the default is 1)
ylim
: numeric vector of length two that contains the limits of the y-axis of the prediction plot
ylab
: a character that controls the text on the y-axis
main
: a character that controls the text in the overall title
legend.text
: a character vector of length two that controls how the forecast and actual lines should be named or referred to in the legend of the plot
fitted
: If TRUE
, then the fitted values as well as actual values are plotted in-sample
newmactual
: numeric vector or NULL
(default). Enables the plotting of actual values out-of-sample in the mean in addition to the forecasts
newvactual
: numeric vector or NULL
(default). Enables the plotting of squared residuals ('actual values') out-of-sample in addition to the forecasts
shades
: numeric vector of length length(ci.levels)
that contains the shades of grey associated with the confidence intervals in the prediction plot. The shades can range from 100 (white) to 0 (black)
a vector
of class zoo
containing the out-of-sample forecasts, or a matrix
of class zoo
containing the out-of-sample forecasts together with prediction-quantiles, or NULL
if return=FALSE
Felix Pretis, https://felixpretis.climateeconometrics.org/
James Reade, https://sites.google.com/site/jjamesreade/
Genaro Sucarrat, http://www.sucarrat.net/
##simulate from an AR(1): set.seed(123) y <- arima.sim(list(ar=0.4), 40) ##estimate AR(2) model with intercept: mymod <- arx(y, mc=TRUE, ar=c(1,2)) ##generate out-of-sample forecasts: predict(mymod) ##same, but plot the predictions in addition: #predict(mymod, plot=TRUE) ##same, but return also the quantiles of the confidence intervals: #predict(mymod, ci.levels=c(0.50,0.90), plot=TRUE) ##same, but with non-default levels on the confidence intervals: #predict(mymod, ci.levels=c(0.20,0.80, 0.99), plot=TRUE) ##same, but with more confidence intervals: #predict(mymod, ci.levels=seq(0.20, 0.95, by=0.05), plot=TRUE) ##same, but with less rugged ci's (achieved by increasing n.sim): ##predict(mymod, ci.levels=seq(0.20, 0.95, by=0.05), n.sim=50000, plot=TRUE) ##same, but using standard normals (instead of bootstrap) in the simulations: #n.sim <- 2000 #n.ahead <- 12 #the default on n.ahead #predict(mymod, ci.levels=seq(0.20, 0.95, by=0.05), n.sim=n.sim, # innov=rnorm(n.ahead*n.sim), plot=TRUE) ##make x-regressors: x <- matrix(rnorm(40*3), 40, 3) ##estimate AR(1) model with intercept and covariates: mymod <- arx(y, mc=TRUE, ar=1, mxreg=x) ##predict up to 5 steps ahead, setting x's to 0 out-of-sample: predict(mymod, n.ahead=5, newmxreg=matrix(0,5,NCOL(x))) ##same, but do also plot: #predict(mymod, n.ahead=5, newmxreg=matrix(0,5,NCOL(x)), # plot=TRUE) ##estimate an AR(2) model w/intercept and a log-ARCH(1) specification ##on the variance: #mymodel <- arx(y, mc=TRUE, ar=1:2, arch=1) ##generate forecasts of the conditional variances: #predict(mymodel, spec="variance") ##same, but do also plot: #predict(mymodel, spec="variance", plot=TRUE) ##illustrations of the usage of plot.options: #mymodel <- arx(y, mc=TRUE, ar=1) #predict(mymodel, plot=TRUE, plot.options=list(keep=1)) #predict(mymodel, plot=TRUE, plot.options=list(line.at.origin=TRUE)) #predict(mymodel, plot=TRUE, plot.options=list(start.at.origin=FALSE)) #predict(mymodel, plot=TRUE, # plot.options=list(start.at.origin=FALSE, fitted=TRUE)) #predict(mymodel, plot=TRUE, plot.options=list(dot.at.origin=FALSE)) #predict(mymodel, plot=TRUE, plot.options=list(hlines=c(-2,-1,0,1,2))) #predict(mymodel, plot=TRUE, plot.options=list(col=c("darkred","green"))) #predict(mymodel, plot=TRUE, plot.options=list(lty=c(3,2))) #predict(mymodel, plot=TRUE, plot.options=list(lwd=3)) #predict(mymodel, plot=TRUE, plot.options=list(ylim=c(-8,8))) #predict(mymodel, plot=TRUE, plot.options=list(ylab="User-specified y-axis")) #predict(mymodel, plot=TRUE, # plot.options=list(main="User-specified overall title")) #predict(mymodel, plot=TRUE, # plot.options=list(legend.text=c("User-specified 1","User-specified 2"))) #predict(mymodel, plot=TRUE, plot.options=list(fitted=TRUE)) #predict(mymodel, plot=TRUE, plot.options=list(newmactual=rep(0,6))) #predict(mymodel, plot=TRUE, plot.options=list(shades.of.grey=c(95,50))) #predict(mymodel, plot=TRUE, plot.options=list(shades.of.grey=c(50,95))) #invert shades
##simulate from an AR(1): set.seed(123) y <- arima.sim(list(ar=0.4), 40) ##estimate AR(2) model with intercept: mymod <- arx(y, mc=TRUE, ar=c(1,2)) ##generate out-of-sample forecasts: predict(mymod) ##same, but plot the predictions in addition: #predict(mymod, plot=TRUE) ##same, but return also the quantiles of the confidence intervals: #predict(mymod, ci.levels=c(0.50,0.90), plot=TRUE) ##same, but with non-default levels on the confidence intervals: #predict(mymod, ci.levels=c(0.20,0.80, 0.99), plot=TRUE) ##same, but with more confidence intervals: #predict(mymod, ci.levels=seq(0.20, 0.95, by=0.05), plot=TRUE) ##same, but with less rugged ci's (achieved by increasing n.sim): ##predict(mymod, ci.levels=seq(0.20, 0.95, by=0.05), n.sim=50000, plot=TRUE) ##same, but using standard normals (instead of bootstrap) in the simulations: #n.sim <- 2000 #n.ahead <- 12 #the default on n.ahead #predict(mymod, ci.levels=seq(0.20, 0.95, by=0.05), n.sim=n.sim, # innov=rnorm(n.ahead*n.sim), plot=TRUE) ##make x-regressors: x <- matrix(rnorm(40*3), 40, 3) ##estimate AR(1) model with intercept and covariates: mymod <- arx(y, mc=TRUE, ar=1, mxreg=x) ##predict up to 5 steps ahead, setting x's to 0 out-of-sample: predict(mymod, n.ahead=5, newmxreg=matrix(0,5,NCOL(x))) ##same, but do also plot: #predict(mymod, n.ahead=5, newmxreg=matrix(0,5,NCOL(x)), # plot=TRUE) ##estimate an AR(2) model w/intercept and a log-ARCH(1) specification ##on the variance: #mymodel <- arx(y, mc=TRUE, ar=1:2, arch=1) ##generate forecasts of the conditional variances: #predict(mymodel, spec="variance") ##same, but do also plot: #predict(mymodel, spec="variance", plot=TRUE) ##illustrations of the usage of plot.options: #mymodel <- arx(y, mc=TRUE, ar=1) #predict(mymodel, plot=TRUE, plot.options=list(keep=1)) #predict(mymodel, plot=TRUE, plot.options=list(line.at.origin=TRUE)) #predict(mymodel, plot=TRUE, plot.options=list(start.at.origin=FALSE)) #predict(mymodel, plot=TRUE, # plot.options=list(start.at.origin=FALSE, fitted=TRUE)) #predict(mymodel, plot=TRUE, plot.options=list(dot.at.origin=FALSE)) #predict(mymodel, plot=TRUE, plot.options=list(hlines=c(-2,-1,0,1,2))) #predict(mymodel, plot=TRUE, plot.options=list(col=c("darkred","green"))) #predict(mymodel, plot=TRUE, plot.options=list(lty=c(3,2))) #predict(mymodel, plot=TRUE, plot.options=list(lwd=3)) #predict(mymodel, plot=TRUE, plot.options=list(ylim=c(-8,8))) #predict(mymodel, plot=TRUE, plot.options=list(ylab="User-specified y-axis")) #predict(mymodel, plot=TRUE, # plot.options=list(main="User-specified overall title")) #predict(mymodel, plot=TRUE, # plot.options=list(legend.text=c("User-specified 1","User-specified 2"))) #predict(mymodel, plot=TRUE, plot.options=list(fitted=TRUE)) #predict(mymodel, plot=TRUE, plot.options=list(newmactual=rep(0,6))) #predict(mymodel, plot=TRUE, plot.options=list(shades.of.grey=c(95,50))) #predict(mymodel, plot=TRUE, plot.options=list(shades.of.grey=c(50,95))) #invert shades
Generate out-of-sample variance forecasts up to n.ahead
steps ahead. Optionally, quantiles of the forecasts are also returned if the argument probs
is specified. The forecasts, confidence intervals and quantiles are obtained via simulation. By default, 5000 simulations is used, but this can be changed via the n.sim
argument. Also by default, the simulations uses a classical bootstrap to sample from the standardised residuals. To use an alternative set of standardised innovations, for example the standard normal, use the innov
argument
## S3 method for class 'larch' predict(object, n.ahead=12, newvxreg=NULL, newindex=NULL, n.sim=NULL, innov=NULL, probs=NULL, quantile.type=7, verbose = FALSE, ...)
## S3 method for class 'larch' predict(object, n.ahead=12, newvxreg=NULL, newindex=NULL, n.sim=NULL, innov=NULL, probs=NULL, quantile.type=7, verbose = FALSE, ...)
object |
an object of class 'larch' |
n.ahead |
|
newvxreg |
a |
newindex |
|
n.sim |
|
innov |
|
probs |
|
quantile.type |
an integer between 1 and 9 that selects which algorithm to be used in computing the quantiles, see the argument |
verbose |
logical with default |
... |
additional arguments |
No details for the moment.
a vector
of class zoo
containing the out-of-sample forecasts, or a matrix
of class zoo
containing the out-of-sample forecasts together with additional information (e.g. the prediction-quantiles)
Genaro Sucarrat, https://www.sucarrat.net/
##Simulate some data: set.seed(123) e <- rnorm(40) ##estimate log-ARCH(1) model: mymod <- larch(e, arch=1) ##generate out-of-sample forecasts: predict(mymod) ##same, but return also selected quantiles: predict(mymod, probs=c(0.10,0.90)) ##same, but using standard normals (instead of bootstrap) in the simulations: n.sim <- 2000 n.ahead <- 12 #the default on n.ahead predict(mymod, probs=c(0.10,0.90), n.sim=n.sim, innov=rnorm(n.ahead*n.sim)) ##make x-regressors: x <- matrix(rnorm(40*2), 40, 2) ##estimate log-ARCH(1) model w/covariates: mymod <- larch(e, arch=1, vxreg=x) ##predict up to 5 steps ahead, setting x's to 0 out-of-sample: predict(mymod, n.ahead=5, newvxreg=matrix(0,5,NCOL(x)))
##Simulate some data: set.seed(123) e <- rnorm(40) ##estimate log-ARCH(1) model: mymod <- larch(e, arch=1) ##generate out-of-sample forecasts: predict(mymod) ##same, but return also selected quantiles: predict(mymod, probs=c(0.10,0.90)) ##same, but using standard normals (instead of bootstrap) in the simulations: n.sim <- 2000 n.ahead <- 12 #the default on n.ahead predict(mymod, probs=c(0.10,0.90), n.sim=n.sim, innov=rnorm(n.ahead*n.sim)) ##make x-regressors: x <- matrix(rnorm(40*2), 40, 2) ##estimate log-ARCH(1) model w/covariates: mymod <- larch(e, arch=1, vxreg=x) ##predict up to 5 steps ahead, setting x's to 0 out-of-sample: predict(mymod, n.ahead=5, newvxreg=matrix(0,5,NCOL(x)))
Convenience functions that generates LaTeX-code of an estimation result in equation-form. printtex
can, in principle, be applied to any object for which coef
, vcov
and logLik
methods exist. Note: The generated LaTeX-code contains an eqnarray
environment, which requires that the amsmath
package is loaded in the preamble of the LaTeX document.
printtex(x, fitted.name=NULL, xreg.names=NULL, digits=4, intercept=TRUE, gof=TRUE, diagnostics=TRUE, nonumber=FALSE, nobs="T", index="t", dec=NULL, print.info=TRUE) ## S3 method for class 'arx' toLatex(object, ...) ## S3 method for class 'gets' toLatex(object, ...)
printtex(x, fitted.name=NULL, xreg.names=NULL, digits=4, intercept=TRUE, gof=TRUE, diagnostics=TRUE, nonumber=FALSE, nobs="T", index="t", dec=NULL, print.info=TRUE) ## S3 method for class 'arx' toLatex(object, ...) ## S3 method for class 'gets' toLatex(object, ...)
x |
an estimation result, e.g. |
object |
an estimation result of class |
fitted.name |
|
xreg.names |
|
digits |
integer, the number of digits to be printed |
intercept |
logical or numeric. The argument determines whether one of the regressors is an intercept or not, or its location. If |
gof |
logical, whether to include goodness-of-fit in the print |
diagnostics |
logical, whether to include diagnostics in the print |
nonumber |
logical, whether to remove or not (default) the equation-numbering |
nobs |
character, the notation to use to denote the number of observations |
index |
|
dec |
|
print.info |
|
... |
arguments passed on to |
toLatex.arx
and toLatex.gets
are simply wrappers to printtex
LaTeX code of an estimation result
Genaro Sucarrat, http://www.sucarrat.net/
arx
, logitx
, getsm
, getsv
, isat
##simulate random variates, estimate model: y <- rnorm(30) mX <- matrix(rnorm(30*2), 30, 2) mymod <- arx(y, ar=1:3, mxreg=mX) ##print latex code of estimation result: printtex(mymod) ##add intercept, at the end, to regressor matrix: mX <- cbind(mX,1) colnames(mX) <- c("xreg1", "xreg2", "intercept") mymod <- arx(y, mc=FALSE, mxreg=mX) ##set intercept location to 3: printtex(mymod, intercept=3)
##simulate random variates, estimate model: y <- rnorm(30) mX <- matrix(rnorm(30*2), 30, 2) mymod <- arx(y, ar=1:3, mxreg=mX) ##print latex code of estimation result: printtex(mymod) ##add intercept, at the end, to regressor matrix: mX <- cbind(mX,1) colnames(mX) <- c("xreg1", "xreg2", "intercept") mymod <- arx(y, mc=FALSE, mxreg=mX) ##set intercept location to 3: printtex(mymod, intercept=3)
Recursive estimation of coefficients and standard errors
recursive(object, spec="mean", std.errors=TRUE, from=40, tol=1e-07, LAPACK=FALSE, plot=TRUE, return=TRUE)
recursive(object, spec="mean", std.errors=TRUE, from=40, tol=1e-07, LAPACK=FALSE, plot=TRUE, return=TRUE)
object |
an |
spec |
'mean' or 'variance'. If 'mean' (default), the the recursive estimates of the mean-equation are estimated |
std.errors |
logical. If TRUE (default), then the coefficient standard errors are also computed |
from |
integer. The starting point of the recursion |
tol |
numeric. The tolerance for linear dependency among regressors |
LAPACK |
logical, TRUE or FALSE (default). If true use LAPACK otherwise use LINPACK, see |
plot |
NULL or logical. If TRUE, then the recursive coefficient estimates are plotted. If NULL (default), then the value set by |
return |
logical. If TRUE (default), then the recursive estimates are returned in a list |
If return=TRUE
, then a list
is returned with the following components:
estimates |
a |
standard.errors |
a |
Genaro Sucarrat, http://www.sucarrat.net/
##generate random variates, estimate model: y <- rnorm(100) mX <- matrix(rnorm(4*100), 100, 4) mymodel <- arx(y, mc=TRUE, mxreg=mX) ##compute recursive estimates and plot them: recursive(mymodel)
##generate random variates, estimate model: y <- rnorm(100) mX <- matrix(rnorm(4*100), 100, 4) mymodel <- arx(y, mc=TRUE, mxreg=mX) ##compute recursive estimates and plot them: recursive(mymodel)
The function generates the regressors of the mean equation in an arx
model. The returned value is a matrix
with the regressors and, by default, the regressand in column one. By default, observations (rows) with missing values are removed in the beginning and the end with na.trim
, and the returned matrix is a zoo
object.
regressorsMean(y, mc = FALSE, ar = NULL, ewma = NULL, mxreg = NULL, prefix="m", return.regressand = TRUE, return.as.zoo = TRUE, na.trim = TRUE, na.omit=FALSE)
regressorsMean(y, mc = FALSE, ar = NULL, ewma = NULL, mxreg = NULL, prefix="m", return.regressand = TRUE, return.as.zoo = TRUE, na.trim = TRUE, na.omit=FALSE)
y |
numeric vector, time-series or |
mc |
logical. |
ar |
either |
ewma |
either |
mxreg |
either |
prefix |
character, possibly of length zero, e.g. |
return.regressand |
logical. |
return.as.zoo |
|
na.trim |
|
na.omit |
|
A matrix, by default of class zoo
, with the regressand as column one (the default).
Genaro Sucarrat, http://www.sucarrat.net/
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. DOI: https://www.jstatsoft.org/article/view/v086i03
arx
, isat
, regressorsVariance
, zoo
, eqwma
, na.trim
and na.trim
.
##generate some data: y <- rnorm(10) #regressand x <- matrix(rnorm(10*5), 10, 5) #regressors ##create regressors (examples): regressorsMean(y, mxreg=x) regressorsMean(y, mxreg=x, return.regressand=FALSE) regressorsMean(y, mc=TRUE, ar=1:3, mxreg=x) regressorsMean(log(y^2), mc=TRUE, ar=c(2,4)) ##let y and x be time-series: y <- ts(y, frequency=4, end=c(2018,4)) x <- ts(x, frequency=4, end=c(2018,4)) regressorsMean(y, mxreg=x) regressorsMean(y, mc=TRUE, ar=1:3, mxreg=x) regressorsMean(log(y^2), mc=TRUE, ar=c(2,4)) ##missing values (NA): y[1] <- NA x[10,3] <- NA regressorsMean(y, mxreg=x) regressorsMean(y, mxreg=x, na.trim=FALSE)
##generate some data: y <- rnorm(10) #regressand x <- matrix(rnorm(10*5), 10, 5) #regressors ##create regressors (examples): regressorsMean(y, mxreg=x) regressorsMean(y, mxreg=x, return.regressand=FALSE) regressorsMean(y, mc=TRUE, ar=1:3, mxreg=x) regressorsMean(log(y^2), mc=TRUE, ar=c(2,4)) ##let y and x be time-series: y <- ts(y, frequency=4, end=c(2018,4)) x <- ts(x, frequency=4, end=c(2018,4)) regressorsMean(y, mxreg=x) regressorsMean(y, mc=TRUE, ar=1:3, mxreg=x) regressorsMean(log(y^2), mc=TRUE, ar=c(2,4)) ##missing values (NA): y[1] <- NA x[10,3] <- NA regressorsMean(y, mxreg=x) regressorsMean(y, mxreg=x, na.trim=FALSE)
The function creates the regressors of a log-variance model, e.g. in a arx
model. The returned value is a matrix
with the regressors and, by default, the regressand in the first column. By default, observations (rows) with missing values are removed in the beginning and the end with na.trim
, and the returned matrix is a zoo
object.
regressorsVariance(e, vc = TRUE, arch = NULL, harch = NULL, asym = NULL, asymind = NULL, log.ewma = NULL, vxreg = NULL, prefix = "v", zero.adj = NULL, vc.adj = TRUE, return.regressand = TRUE, return.as.zoo = TRUE, na.trim = TRUE, na.omit = FALSE)
regressorsVariance(e, vc = TRUE, arch = NULL, harch = NULL, asym = NULL, asymind = NULL, log.ewma = NULL, vxreg = NULL, prefix = "v", zero.adj = NULL, vc.adj = TRUE, return.regressand = TRUE, return.as.zoo = TRUE, na.trim = TRUE, na.omit = FALSE)
e |
numeric vector, time-series or |
vc |
logical. |
arch |
either |
harch |
either |
asym |
either |
asymind |
either |
log.ewma |
either |
vxreg |
either |
prefix |
a |
zero.adj |
|
vc.adj |
deprecated and ignored. |
return.regressand |
|
return.as.zoo |
|
na.trim |
|
na.omit |
|
A matrix
, by default of class zoo
, with the regressand as column one (the default).
Genaro Sucarrat, http://www.sucarrat.net/
Corsi, Fulvio (2009): 'A Simple Approximate Long-Memory Model of Realized Volatility', Journal of Financial Econometrics 7, pp. 174-196
Muller, Ulrich A., Dacorogna, Michel M., Dave, Rakhal D., Olsen, Richard B, Pictet, Olivier, Weizsaker, Jacob E. (1997): 'Volatilities of different time resolutions - Analyzing the dynamics of market components'. Journal of Empirical Finance 4, pp. 213-239
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. DOI: https://www.jstatsoft.org/article/view/v086i03
Sucarrat, Genaro and Escribano, Alvaro (2012): 'Automated Financial Model Selection: General-to-Specific Modelling of the Mean and Volatility Specifications', Oxford Bulletin of Economics and Statistics 74, Issue 5 (October), pp. 716-735
regressorsMean
, arx
, zoo
, leqwma
, na.trim
and na.omit
.
##generate some data: eps <- rnorm(10) #error term x <- matrix(rnorm(10*5), 10, 5) #regressors ##create regressors (examples): regressorsVariance(eps, vxreg=x) regressorsVariance(eps, vxreg=x, return.regressand=FALSE) regressorsVariance(eps, arch=1:3, vxreg=x) regressorsVariance(eps, arch=1:2, asym=1, vxreg=x) regressorsVariance(eps, arch=1:2, asym=1, log.ewma=5) ##example where eps and x are time-series: eps <- ts(eps, frequency=4, end=c(2018,4)) x <- ts(x, frequency=4, end=c(2018,4)) regressorsVariance(eps, vxreg=x) regressorsVariance(eps, arch=1:3, vxreg=x) regressorsVariance(eps, arch=1:2, asym=1, vxreg=x) regressorsVariance(eps, arch=1:2, asym=1, log.ewma=5)
##generate some data: eps <- rnorm(10) #error term x <- matrix(rnorm(10*5), 10, 5) #regressors ##create regressors (examples): regressorsVariance(eps, vxreg=x) regressorsVariance(eps, vxreg=x, return.regressand=FALSE) regressorsVariance(eps, arch=1:3, vxreg=x) regressorsVariance(eps, arch=1:2, asym=1, vxreg=x) regressorsVariance(eps, arch=1:2, asym=1, log.ewma=5) ##example where eps and x are time-series: eps <- ts(eps, frequency=4, end=c(2018,4)) x <- ts(x, frequency=4, end=c(2018,4)) regressorsVariance(eps, vxreg=x) regressorsVariance(eps, arch=1:3, vxreg=x) regressorsVariance(eps, arch=1:2, asym=1, vxreg=x) regressorsVariance(eps, arch=1:2, asym=1, log.ewma=5)
UK Annual Total Anthropogenic Sulphur Dioxide (SO2) Emissions 1946-2005.
data("so2data")
data("so2data")
A data frame with 60 observations on the following 4 variables.
year
Year of observation
uk_tot_so2
UK annual total anthropogenic SO2 emissions in gigagrams
Luk_tot_so2
Log of UK annual total anthropogenic SO2 emissions
DLuk_tot_so2
First difference of Log UK annual total anthropogenic SO2 emissions
Data reports the total estimated anthropogenic SO2 emissions aggregated over coal, petroleum, biomass combustion, smelting, fuel processing, and other processes.
Smith, SJ, J van Aardenne, Z Klimont, RJ Andres, A Volke, and S Delgado Arias. (2011). Anthropogenic Sulfur Dioxide Emissions, 1850-2005: National and Regional Data Set by Source Category, Version 2.86. Data distributed by the NASA Socioeconomic Data and Applications Center (SEDAC), CIESIN, Columbia University, Palisades, New York. Available at
http://sedac.ciesin.columbia.edu/data/set/haso2-anthro-sulfur-dioxide-emissions-1850-2005-v2-86
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44
Smith, SJ, J van Aardenne, Z Klimont, RJ Andres, A Volke, and S Delgado Arias. (2011). Anthropogenic Sulfur Dioxide Emissions: 1850-2005, Atmospheric Chemistry and Physics, 11:1101-1116.
data(so2data) ##create annual zoo object: newso2data<- zooreg(so2data[,-1], start=1946, frequency=1) ##plot UK annual total anthropogenic SO2 emissions: plot(newso2data$uk_tot_so2)
data(so2data) ##create annual zoo object: newso2data<- zooreg(so2data[,-1], start=1946, frequency=1) ##plot UK annual total anthropogenic SO2 emissions: plot(newso2data$uk_tot_so2)
Daily Standard and Poor's 500 (SP500) index data from 3 January 1950 to 8 March 2016.
data("sp500data")
data("sp500data")
A data frame with 16652 observations on the following 7 variables:
Date
the dates
Open
the opening values of the index
High
the daily maximum value of the index
Low
the daily minimum value of the index
Close
the closing values of the index
Volume
the traded volume
Adj.Close
the adjusted closing values of the index
Yahoo Finance, retrieved 9 March 2016
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44
data(sp500data) sp500data <- zoo(sp500data[, -1], order.by = as.Date(sp500data[, "Date"])) plot(window(sp500data, start = as.Date("2000-01-03")))
data(sp500data) sp500data <- zoo(sp500data[, -1], order.by = as.Date(sp500data[, "Date"])) plot(window(sp500data, start = as.Date("2000-01-03")))
Computes the variance of the gauge (false-positive rate of outliers under the null of no outliers) in impulse indicator saturation based on Jiao and Pretis (2019).
vargaugeiis(t.pval, T, infty=FALSE, m=1)
vargaugeiis(t.pval, T, infty=FALSE, m=1)
t.pval |
numeric, between 0 and 1. Selection p-value used in indicator saturation. |
T |
integer, sample sized used in indicator saturation. |
m |
integer, number of iterations in variance computation, default=1 |
infty |
logical, argument used for variance computation |
The function computes the variance of the Gauge (false-positive rate of outliers in impulse indicator saturation) for a given level of significance of selection (t.pval
) and sample size (T
) based on Jiao and Pretis (2019). This is an auxilliary function used within the outliertest
function.
Returns a dataframe of the variance and standard deviation of the gauge, as well the asymptotic variance and standard deviation.
Felix Pretis, https://felixpretis.climateeconometrics.org/
Jiao, X. & Pretis, F. (2019). Testing the Presence of Outliers in Regression Models. Discussion Paper.
Pretis, F., Reade, J., & Sucarrat, G. (2018). Automated General-to-Specific (GETS) regression modeling and indicator saturation methods for the detection of outliers and structural breaks. Journal of Statistical Software, 86(3).
###Computing the variance of the gauge under the null for a sample of T=200 observations: vargaugeiis(t.pval=0.05, T=200, infty=FALSE, m=1)
###Computing the variance of the gauge under the null for a sample of T=200 observations: vargaugeiis(t.pval=0.05, T=200, infty=FALSE, m=1)